Notice:	You cannot copy or search for text in this PDF file, because this PDF
	file is converted from the scanned image of printed materials.

P1 98.2

N-CHANNEL MOS FIELD EFFECT POWER TRANSISTORS 2SK1059, 2SK1059-Z

DESCRIPTION

The 2SK1059, 2SK1059-Z are N-Channel MOS Field Effect Power Transistor designed for solenoid, motor and lamp driver.

FEATURES

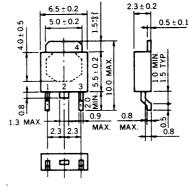
• 4 V Gate Drive – Logic level –

- Low R_{DS(on})
- No Second Breakdown
- Designed for Hybrid Integrated Circuits

ABSOLUTE MAXIMUM RATINGS

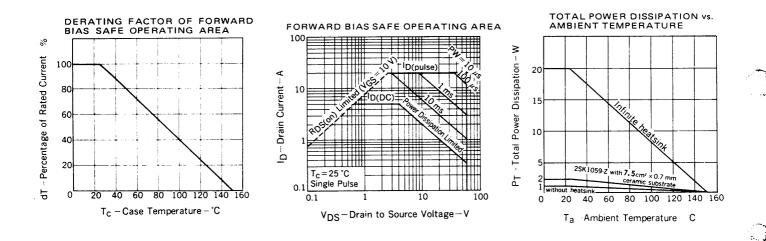

Maximum Temperatures											
Storage Temperature											
Junction Temperature 150	°C Max	imum									
Maximum Power Dissipations											
Total Power Dissipation [*]	2.0	W									
Total Power Dissipation $(T_c = 25 \circ C)^{**}$.	- 20	W									
Maximum Voltages and Currents ($T_a = 25 \degree C$)											
V _{DSS} Drain to Source Voltage	60	V									
V _{GSS} Gate to Source Voltage	±20	V									
I _{D(DC)} Drain Current (DC)	±5	Α									
I _{D(pulse)} Drain Current (pulse)***	±20	Α									
* Mounted on ceramic substrate of 7.5 cm ² × 0).7 mm										
** T _C = 25 °C *** PW ≦ 10 μs, Duty Cycle ≦ 1 %											

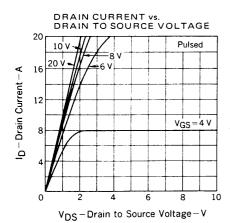
ELECTRICAL CHARACTERISTICS (T_a = 25 °C)

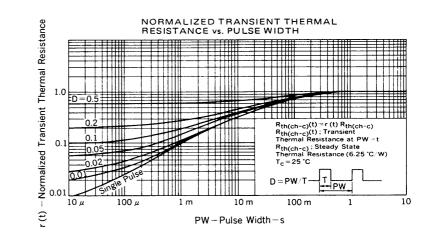

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS	
R _{DS(on})	Drain to Source On-State Resistance		0.1	0.135	Ω	V _{GS} = 10 V, I _D = 3 A	
R _{DS(on})	Drain to Source On-State Resistance		0.15	0.22	Ω	V _{GS} = 4 V, I _D = 3 A	
V _{GS(off)}	Gate to Source Cutoff Voltage	1.0		2.5	v	V _{DS} = 10 V, I _D = 1 mA	
Yfs	Forward Transfer Admittance	4.0			S	V _{DS} = 10 V, I _D = 3 A	
IDSS	Drain Leakage Current			10	μA	V _{DS} = 60 V, V _{GS} = 0	
IGSS	Gate to Source Leakage Current			±100	nA	V _{GS} = ±20 V, V _{DS} = 0	
Ciss	Input Capacitance		900		pF	V _{DS} = 10 V	
Coss	Output Capacitance		350		pF	$V_{GS} = 0$	
C _{rss}	Reverse Transfer Capacitance		100		рF	f = 1 MHz	
^t d(on)	Turn-On Delay Time		10		ns		
t _r	Rise Time		40		ns	I _D = 3 A, V _{DD} ≒ 10 V R _I = 17 Ω	
^t d(off)	Turn-Off Delay Time		110		ns	$R_{in} = 10 \Omega$	
tf	Fall Time		30		ns		

NEC cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

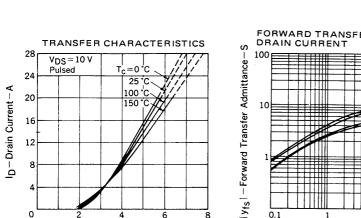
PACKAGE DIMENSIONS (Unit: mm)

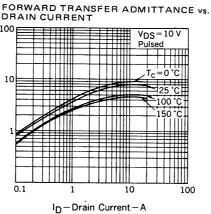


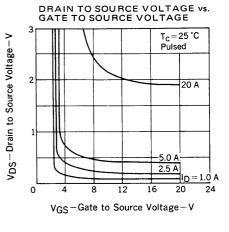



1

TYPICAL CHARACTERISTICS (T_a = 25 $^{\circ}$ C)




1. Gate 2. Drain 3. Source 4. Drain (Fin)



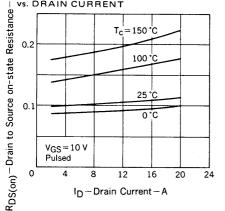
2

C DRAIN TO SOURCE ON-STATE RESISTANCE

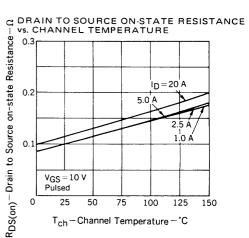
4

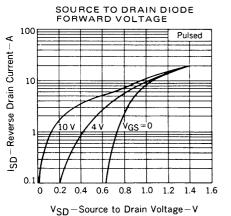
 $V_{GS}-Gate$ to Source Voltage-V

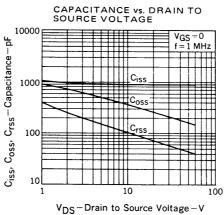
6

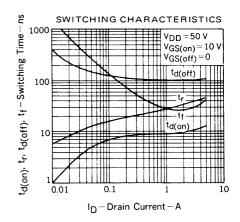

8

16

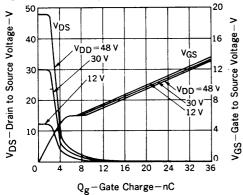

12 8

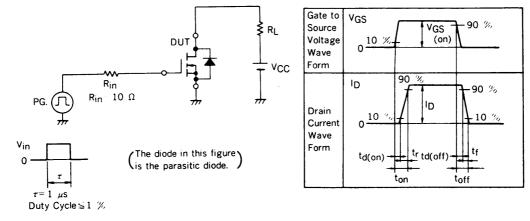

0


)

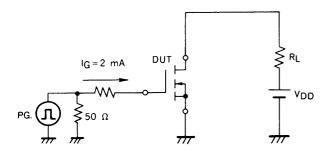


GATE TO SOURCE CUTOFF VOLTAGE vs. CHANNEL TEMPERATURE $V_{DS} = 10 V$ V_{GS(off)}-Gate to Source Cutoff Voltage $I_D = 1 mA$ 3.0 2.0 1.0 0 40 80 120 160 200 T_{ch}-Channel Temperature-°C





з


DYNAMIC INPUT/OUTPUT CHARACTERISTICS

SWITCHING TIME TEST CIRCUIT

GATE CHARGE TEST CIRCUIT

TC-4020 February 1989M Printed in Japan WER Containing an all pri

)