Features

- Full-Frame Image Sensor 4096 x 4096 Pixels
- 11 μm x 11 μm Photo-MOS Pixel with 100% Aperture
- Image Zone: 45 x 45 mm
- Frame Readout Through One, Two or Four Outputs
- Data Rates Up to 4 x 40 MHz (Compatibility with 7, 4 Frames/Second)
- True 12-bit High Dynamic Range
- Very Low Readout Noise
- Very Low Dark Current (MPP Mode)
- Optimized Resolution and Responsivity in the 400 1100 nm Spectrum
- On-chip Thermometer for Each Quarter
- Additional Full-Frame Operating Modes:
 - 4/3 Aspect Ratio: 4096 x 3072
 - 2/1 Aspect Ratio: 4096 x 2048
- ww.DataSheet4 Binning 2 x 2 Pixels (Format 2048 x 2048 Pixels of 22 x 22 μm)
 - Binning 4 x 4 Pixels (Format 1024x 1024 Pixels of 44 x 44 μm)
 - On-request Frame Transfer Architecture:
 - 2048 Active Lines, One Memory Zone with Frame Readout Through One or Two Outputs
 - 2048 Active Lines, Two Memories Zones with Frame Readout Through Two or Four Outputs

Applications

Flexibility and performance makes this device suitable for digital photography, graphic arts, medical or industrial applications and scientific analysis.

Description

Atmel's AT71201M is a full-frame sensor based on charge-coupled device (CCD) technology. It can be used in a wide range of applications thanks to operating mode flexibility, very high definition and high dynamic range.

The nominal photosensitive area is made up of 4096 x 4096 useful pixels and is split into four independent zones that are driven separately by four independent four-phase clock sets. Thus the sensor can be used in up to 12 main modes.

The large format and high definition make the device suitable for any application requiring precision.

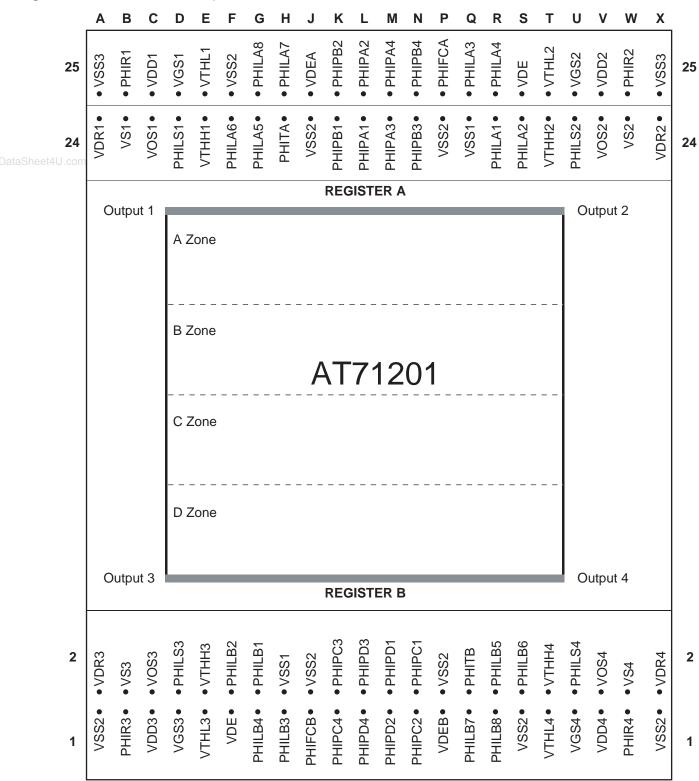
The high sensitivity of the 11 x 11 μ m pixels with 100% fill factor provides a large bandwidth of response with up to 1100 nm wavelength.

Two serial registers and four independent output amplifiers offer a high-frequency functionality at 40 MSPS and up to 7.4 frames per second with a high signal to noise ratio.

16 M-Pixels Sensor

AT71201M

Preliminary



Pinout

Figure 1. AT71201M Pinout, Top View of the Sensor

G

В

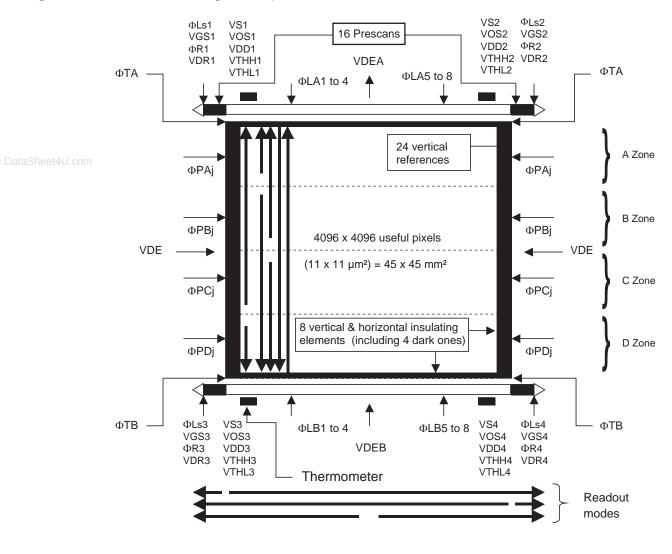
W

Χ

R

 Table 1. AT71201M Pinout

Signal Name	Parameter
PHILA [1;8]	Registers A clocks
PHILB [1;8]	Registers B clocks
PHILS [1;4]	Summing clocks
PHIR [1;4]	Reset gates
PHIPA [1;4]	Image zone A clocks
PHIPB [1;4]	Image zone B clocks
PHIPC [1;4]	Image zone C clocks
PHIPD [1;4]	Image zone D clocks
PHITA	Image zone to register A transfer clock
VGS [1;4]	Register output gate biases
VOS [1;4]	Video outputs
VDD [1;4]	Amplifier drains
VS [1;4]	Amplifier sources
VDR [1;4]	Reset drains
VDE (2)	Peripheral vertical drain
VDEA	Peripheral drain along register A
VDEB	Peripheral drain along register B
VTHL [1;4]	Thermometer low 1 to 4
VTHH [1;4]	Thermometer high 1 to 4
VSS (12)	Ground connection


vww.DataSneet4U.cor

Block Diagram

Figure 2. AT71201M Block Diagram - Top View

Architectural Overview

General Parameters

Table 2. General Parameters

Parameter	Value
Pixel size	11 x 11 µm²
Number of useful pixels per line	4096
Number of useful lines	4096
Number of extra lines	8 per register
Number of readout registers	2
Number of prescan CCD stages (per output)	16
Number of dark references (cells per line)	24
Number of outputs (2 per register)	4 ⁽¹⁾
MPP mode/low dark current mode	Yes (image zone)
Anti-blooming functionality	no
Binning (summation) mode	Yes ⁽²⁾
Pixel clocking mode	4-phase
Readout Register clocking mode	2-phase
Specific functions	Thermometer

- Notes: 1. The full-frame version can be read through one, two or four outputs
 - 2. The lines summation into the register is made by a specific timing diagram. The integration time should be adapted to prevent charge overflow.

A specific clock allows column summation.

The pixel size is 11 x 11µm² with 100% fill factor (photo-MOS technology).

The sensor is compatible with a 180° rotation.

The image zone commands are split in 4 horizontal areas. The combination of the ΦPij clocks allows various transfer configurations.

The serial registers are driven by 8 Φ Li clocks. An adapted combination of them allows transfers of 100% of stages to the right side or the left side or 50% in each direction.

Organization

Top to Bottom

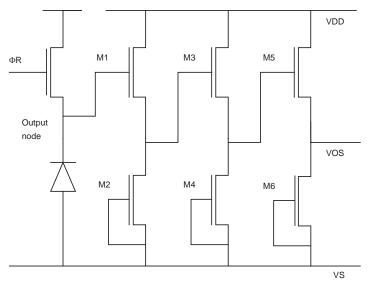
The AT71201M is made up of four zones (A, B, C and D) that are separately driven.

Table 3. Vertical Characteristics

Zone	Configuration		
^	8 dummy lines (4 photosensitive ones)		
A	2048 active lines, 100% photosensitive		
В	2048 active lines, 100% photosensitive		
С	2048 active lines, 100% photosensitive		
	2048 active lines, 100% photosensitive		
В	8 dummy lines (4 photosensitive ones)		

ww.DataSheet4U.com

Corner to Center


Table 4. Horizontal Characteristics for Different Modes

	Readout Mode				
Characteristic	One Output	Two Outputs on Same Register			
Prescan stages	16	16			
Dark references	24	24			
Insulating elements	8	8			
Useful pixels	4096	2048			

Output Amplifiers

The charge packets are clocked towards the output nodes and are converted to voltages. The potential at the output node is read through a source follower amplifier.

Figure 3. On-Chip Output Amplifiers

Absolute Maximum Ratings⁽¹⁾

Table 5. Maximum Applied Voltages with Respect to VSS

	Signal Name	Parameter	Min	Max	
	PHILA [1;8]	Registers A clocks	-0.3V	+15V	
	PHILB [1;8]	Registers B clocks	-0.3V	+15V	
	PHILS [1;4]	Summing clocks	-0.3V	+15V	
	PHIR [1;4]	Reset gates	-0.3V	+15V	
ww.Data	PHIPA [1;4]	Image zone A clocks	-15V & PHIPA [others] -15V	+15V & PHIPA [others] +15V	
	PHIPB [1;4]	Image zone B clocks	-15V & PHIPB [others] -15V	+15V & PHIPB [others] +15V	
	PHIPC [1;4]	Image zone C clocks	-15V & PHIPC [others] -15V	+15V & PHIPC [others] +15V	
	PHIPD [1;4]	Image zone D clocks	-15V & PHIPD [others] -15V	+15V & PHIPD [others] +15V	
	PHITA	Image zone to register A transfer clock	-15V & PHIPA [4] -15V	+15V & PHIPA [4] +15V	
	PHITB Image zone to register B transfer clock		-15V & PHIPB [4] -15V	+15V & PHIPB [4] +15V	
	VGS [1;4]	Ouput gates	-0.3V	+15V	
	VOS [1;4]	Video outputs	-0.3V	+15V	
	VDD [1;4]	Amplifier drains	-0.3V	+15V	
	VS [1;4]	Amplifier sources	-0.3V	+15V	
	VDR [1;4]	Reset drains	-0.3V	+15V	
	VDE	Peripheral drain	-0.3V	+15V	
	VDEA	Peripheral drain along register A	-0.3V	+15V	
	VDEB	Peripheral drain along register B	-0.3V	+15V	
	VTHL [1;4]	Thermometer low 1 to 4	-0.3V	+15V	
	VTHH [1;4]	Thermometer high 1 to 4	-0.3V	+15V	
	VSS	Ground			

Note: 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Shorting VOS to any other pin, even temporally, can permanently damage the output amplifier.

Device exposure to ESD stress could result in current leakage or performance degradation; reliability can also be affected.

To avoid degradation, sensors (including pins and package) have to be handled carefully using a grounded bracelet. When unplugged, they have to be stored in the original case (or box).

In any case, pins of the devices must not be discharged straight to ground..

Storage Temperature Range	-40°C to +70°C
Operating Temperature Range	0°C to +70°C
Thermal Cycling	3°C/mn

/w.DataSheet4U.com

DC Characteristics

Table 6. DC Characteristics

. abie ei be enaracionence	•			
Parameters	Symbol	Typical Value	Adjusting Range	Current
Source bias	Vsi	0V	[0;1] Volts	4 x -25 mA
Amplifier drain supply	VDDi ⁽¹⁾	15V	[14.5;15.5] Volts	4 x 25 mA
Substrate bias	Vss	0V		
Reset diode	VDRi ⁽²⁾	14V	[13.5;14.5] Volts	< 5 μΑ
Output gate	VGSi	3.5V	[3;4] Volts	< 5 μΑ
Vertical drain	VDE	8V	[6;9] Volts (15 V max respect to ΦTi)	< 50 μΑ
Horizontal drain	VDEi	12V	[6;15] Volts	< 50 μΑ

Notes: 1. If the associated output i is not used, VDDi should be stated to 0 Volts in order to reduce global power consumption

2. VDRi voltage should always be kept lower than VDDi voltage, especially during power on

Recommendation: All DC voltages should be bypassed by adding capacitors as closed as possible to the pin connection.

Drive Clock Characteristics

Table 7. Drive Clock Characteristics

	Parameter	Symbol	State	Minimum	Typical	Maximum	Typical Capacitance	
		 (1)	Low	-9V	-8V	-7.5V	27 pF	
	Image clocks	PHIPij ⁽¹⁾	High	+2.5V	+3V	+3.5V	37 nF	
	Transfer electe	PHITk ⁽²⁾	Low	-6V	-5V	-4V	200 5 5	
	Transfer clocks	PHIIK	High	+2.5V	+3V	+3.5V	200 pF	
	Register clocks	PHILkm ⁽²⁾	Low	0V	0V	0.5V	400 - 5	
www.Data			High	+7V	+7.5V	+8V	180 pF	
	Summing clocks PHILSj ⁽¹⁾	DLIII C:(1)	Low	0V	0V	0.5V	45 -5	
		PHILO	High	+7V	+7.5V	+8V	15 pF	
	Donat gata alaaka	PHIRj ⁽¹⁾ Low High	Low	0V	+2V	+3V	15 pF	
	Reset gate clocks		High	+11V	+12V	+13V	15 pF	

Notes: 1. i = A to D, j = 1 to 4

2. k = A to B, m = 1 to 8

Operating Modes

For the required readout mode, the vertical and horizontal clocks must be tied together, as following:

Figure 4. Operating Modes

	VERTICAL TRANSFER							
4112 transfers min	4112 transfers min	2056 transfers min	3080 transfers min					
NBV = 4112	NBV = 4112	NBV = 2056	NBV = 3080					
1-2-3 modes	4-5-6 modes	7-8-9 modes	10-11-12 modes					
Φ PA1= Φ PB1= Φ PC1= Φ PD1= Φ P1	$\Phi \texttt{PA1=}\Phi \texttt{PB1=}\Phi \texttt{PC1=}\Phi \texttt{PD1=} \ \Phi \texttt{P1}$	Φ PA1= Φ PB1= Φ PC1= Φ PD1= Φ P1	Φ PA1= Φ PB1= Φ PC1= Φ PD1= Φ P1					
ΦΡΑ4=ΦΡΒ4=ΦΡC2=ΦΡD2= ΦΡ2 ΦΡΑ3=ΦΡΒ3=ΦΡC3=ΦΡD3= ΦΡ3	ΦPA2=ΦPB2=ΦPC4=ΦPD4= ΦP2 ΦPA3=ΦPB3=ΦPC3=ΦPD3= ΦP3	ΦPA2=ΦPB2=ΦPC2=ΦPD2= ΦP2 ΦPA3=ΦPB3=ΦPC3=ΦPD3= ΦP3	ΦPA2=ΦPB4=ΦPC2=ΦPD2= ΦP2 ΦPA3=ΦPB3=ΦPC3=ΦPD3= ΦP3					
ΦPA2=ΦPB2=ΦPC4=ΦPD4= ΦP4	ΦPA4=ΦPB4=ΦPC2=ΦPD2= ΦP4	ΦΡΑ4=ΦΡΒ4=ΦΡC4=ΦΡD4= ΦΡ4						
ΦTA = Low Level ΦTB = ΦP1	$\Phi TA = \Phi P1$ $\Phi TB = Low Level$	ΦΤΑ = ΦΡ1 ΦΤΒ = ΦΡ1	ΦΤΑ = ΦΡ1 ΦΤΒ = ΦΡ1					
heet4U.com								

Symbols Φ P1, Φ P2, Φ P3, Φ P4 correspond to the clocks described in the full-frame mode timing diagrams. Abbreviations NBV and NBH correspond respectively to the vertical and horizontal number of transfers.

The unused horizontal clocks (Φ L, Φ R, Φ LS) must be stated to their higher level.

Inactive 2 1 2 1 2 1 2 4144 PIXELS PERIODS NBH = 4144Mode4 Mode1 Mode7 4-7-10 modes Mode₁₀ $\begin{array}{l} \Phi \texttt{LA1} \! = \! \! \Phi \texttt{LA4} \! = \! \! \Phi \texttt{LA5} \! = \! \! \Phi \texttt{LA7} \! = \! \! \Phi \texttt{L1} \\ \Phi \texttt{LA2} \! = \! \! \Phi \texttt{LA3} \! = \! \! \Phi \texttt{LA6} \! = \! \! \Phi \texttt{LA8} \! = \! \! \Phi \texttt{L2} \\ \end{array}$ 1-7-10 modes HORIZONTAL TRANSFER ΦLB1=ΦLB3=ΦLB5=ΦLB8=ΦL1 ΦLB2=ΦLB4=ΦLB6=ΦLB7=ΦL2 4 3 3 3 4 3 Inactive 4 4 Inactive 2 1 2 1 2 2 1 4144 PIXELS PERIODS NBH = 4144 Mode2 Mode5 Mode8 Mode11 Φ LA1= Φ LA3= Φ LA5= Φ LA8= Φ L1 Φ LA2= Φ LA4= Φ LA6= Φ LA7= Φ L2 2-8-11 modes 4 3 Inactive 4 3 4 3 4 1 Inactive 2 1 **←** 2 1 **←** 2 1 **←** 2 2096 PIXELS PERIODS NBH = 20966-9-12 modes Mode12 Mode3 Mode6 Mode9 3-9-12 modes ΦLB1=ΦLB3=ΦLB5=ΦLB7 =ΦL1 ΦLB2=ΦLB4=ΦLB6=ΦLB8=ΦL2 **←** 4 3 Inactive 4 3 4 3 4

Timing Diagrams

Figure 5. Full-Frame Mode Timing Diagram

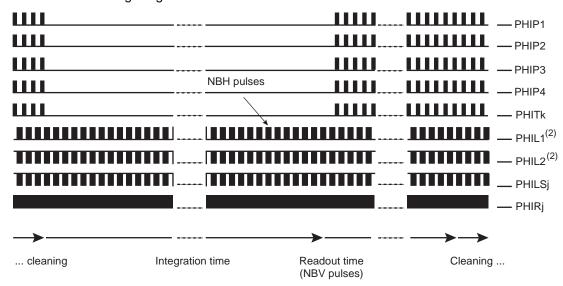
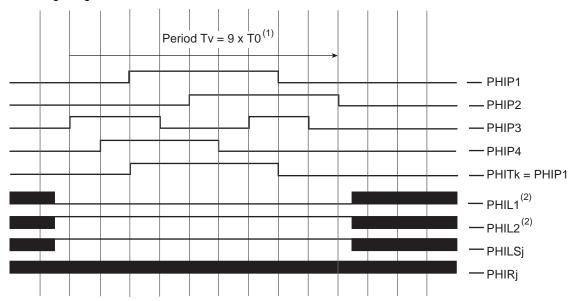
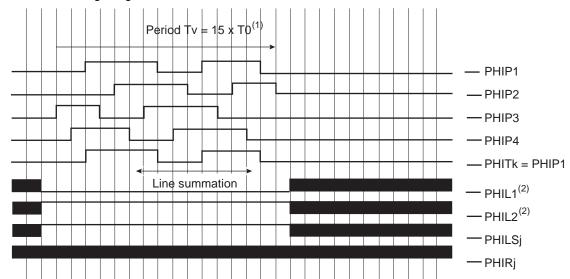
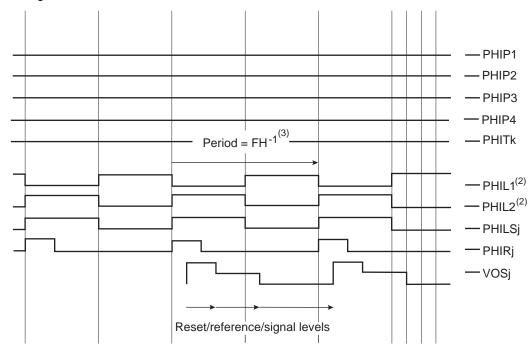



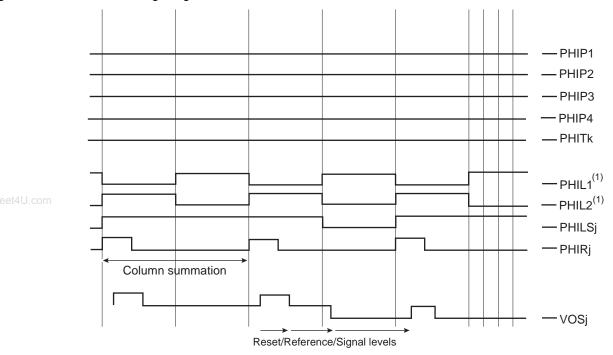
Figure 6. Line Timing Diagram

Notes: 1. T0 = Master clock period (vertical transfer)

2. See Figure 4

Figure 7. Summation Timing Diagram of 2 Lines


Figure 8. Readout Signal

Notes: 1. T0 = Master clock period (vertical transfer)

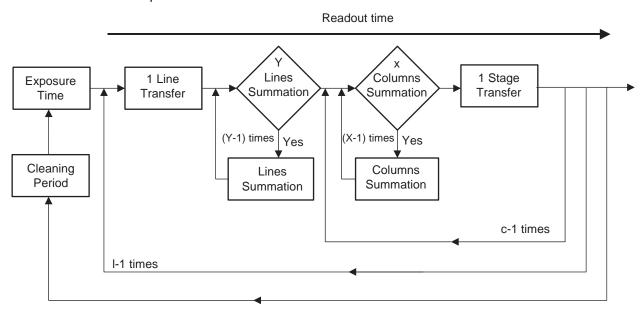

- 2. See Figure 4
- 3. FH = Readout Register Frequency

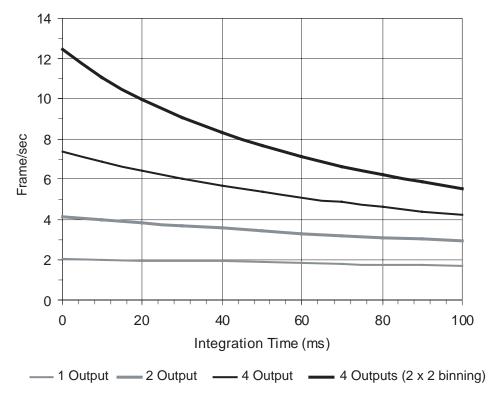
Figure 9. Summation Timing Diagram

Note: 1. See Figure 4

Figure 10. Frame Transfer Sequence

The readout sequence corresponding to an image made of $C\ x\ I$ pixels

- XC = 2048 in modes 3, 6, 9, 12
- XC = 4096 in other modes
- YI = 2048 in modes 1 to 6
- YI = 4096 in modes 7 to 9


Table 8. Time Constants of Different Phases

Time	Symbol	Minimum	Typical	Maximum
Buffer time = Waiting time between Φ Pij and Φ Lkm acting	Tb	100 ns	-	1
Rise Time and Fall Time of ΦPij, ΦTk	Ts	250 ns	0.5 x T0	0.5 x T0
Rise Time and Fall Time of ΦLkm, ΦLSj	Tq	3 ns	6 ns	-
Rise Time and Fall Time of ΦRj	Tr	1.5 ns	3 ns	-

T0 = master clock period (vertical transfer)

Frame Rate Characteristics

Figure 11. Frame Rate Characteristics

Frame rate is given for maximum readout frequency⁽¹⁾.

Note: 1. Horizontal pixel frequency, FH = 40 MHz Vertical transfer time, To = 1.5 μ s

Buffer time, Tb = 100 ns

Output Buffer

Table 9. Output Buffer⁽²⁾

Parameter	Symbol	Minimum	Typical	Maximum	Unit
DC output	Vref	8.0	8.6	9.2	V
Output impedance	Zout	_	88	_	Ω
Output amplifier supply current ⁽¹⁾	IDD	19	25	31	mA
Amplifier bandwidth (-3 dB)	BW	_	200	_	MHz
Charge to Voltage Conversion factor	CVF	-	6.0	_	μV/ electron
Temperature conversion	VTH	_	7.5	_	mV/°C
Vertical transfer time	T0	1.5	2	_	μs
Readout register frequency	FH	_	_	40	MHz

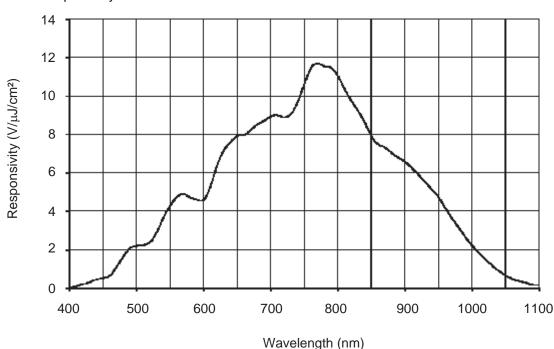
Note:

- 1. Per output
- 2. All characteristics given for temperature = 25° C

Electro-Optical Performances

Table 10. Electro-Optical Performances⁽³⁾

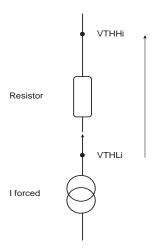
Parameter	Symbol	Minimum	Typical	Maximum	Unit
Pixel saturation voltage	VSAT	600	750	900	mV
Readout saturation charge in binning mode	RSAT	_	1800	_	mV
Dynamic range	DR	72	74	76	dB
Readout noise	RN	_	25	-	electron
Responsivity	R	3.8	4.2	_	V/(µJ/cm²)
Resolution (MTF) at 45 cycles/mm – H axis Resolution (MTF) at 45 cycles/mm – V axis	MTFX ⁽¹⁾ MTFY ⁽¹⁾	-	45 50		% %
Pixel response non-uniformity	PRNU ⁽¹⁾⁽²⁾	_	0.5	3	%
Image zone dark signal, MPP Image zone dark signal, non-MPP Register dark signal, non-MPP	DS1 DS2 DSR	0.05 10 30	0.2 20 60	2 40 100	mV/s mV/s mV/s
Image zone dark signal non-uniformity, MPP integration	DSNU ⁽²⁾	_	0.5	1.5	mV/s
Horizontal charge transfer efficiency per CCD stage	HCTE	0.99993	0.99998	_	_
Vertical charge transfer efficiency per CCD stage	VCTE	0.99995	0.99998	_	_


Notes:

- 1. Combined with 2 mm "BG38" IR filter type
- 2. Standard deviation
- 3. All values given at 25°C, typical voltages

Figure 12. Spectral Responsivity

Temperature Measurement


A current of 100 μ A is forced between VTHLi and VTHHi, in the range of 0 to 70°C, the corresponding measured voltage, is proportional to temperature:

$$Temperature(^{\circ}C) = \frac{VTHHi(mV) - VTHLi(mV)}{7.5(mV/^{\circ}C)} - 613(^{\circ}C)$$

Relative thermometer accuracy is 0.13°C/mV ±10%

Absolute thermometer precision is $\pm 10^{\circ}$ C.

Figure 13. On Chip Thermometer

Image grade

Table 11. Image Grade⁽²⁾

Grade	Blemishes		Cluster 1		Cluster 2		Column	
	Total	D-min ⁽¹⁾	Total	D-min ⁽¹⁾	Total	D-min ⁽¹⁾	Total	D-min ⁽¹⁾
Е	≤ 1500	3	≤ 100	50	≤ 20	100	≤ 10	150

Notes:

- 1. D-min: distance of pixels defects in any direction. All occurrences are non-contiguous.
- 2. Testing has been carried out under the following conditions:

Operating temperature = 25 °C

Illumination conditions: 3200K Halogen lamp with BG38 Infrared filter and f/3.5 aperture Integration time in darkness = 10 seconds, test under illumination at 50% of VSAT

Standard mode, To = 1.5 μ s, FH = 40 MHz

Definitions

Table 12. Defect Sizes

Туре	Description		
Blemish	1 x 1 pixel defect		
Cluster	Blemish groupings of less than a given number of adjacent defects: 1 x 1 pixel < cluster 1 size ≤ 2 x 2 pixels 2 x 2 pixels < cluster 2 size ≤ 5 x 5 pixels		
Column	One-pixel-wide column with more than seven contiguous defective pixels		

Table 13. Defects in Darkness

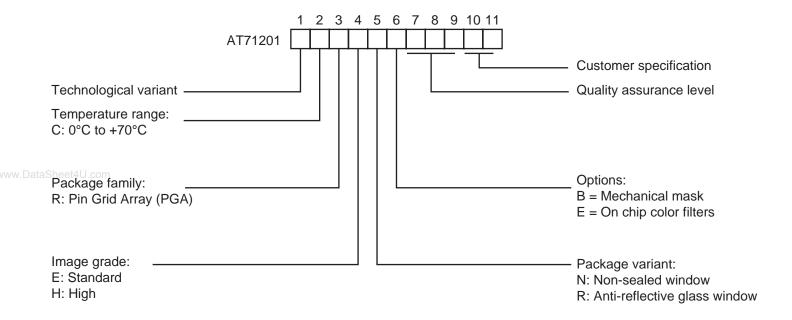
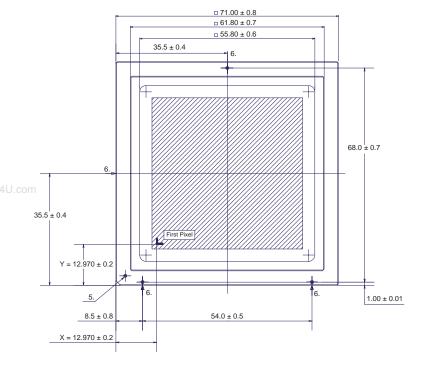
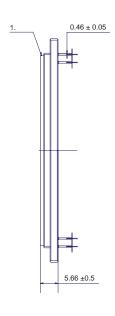
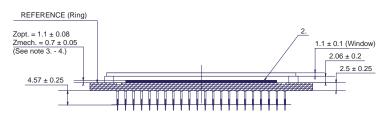

Туре	Description
Blemish/Clusters	Pixel signal deviation of more than 200 mV from the average output signal
Column	Column signal deviation of more than 50 mV from the average output signal

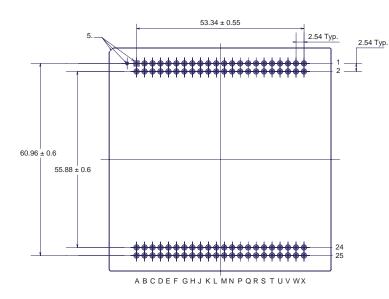
Table 14. Defects Under Illumination

Туре	Description
Blemish/Clusters	Pixel signal deviation of more than ± 30% from the average output signal
Column	Column signal deviation of more than ± 20% from the average output signal


Ordering Information




The following part numbers are available:


- AT71201MCRER
- AT71201MCREN

Package Drawing

- Notes: 1. Anti-reflective window 400 700 nm 2. Photosensitive area

- 2. Prinoisensitive area
 3. Zopt = Optical distance between REFERENCE surface and 2
 4. Zmech = Mechanical distance between REFERENCE surface and 2
 5. The A1 index mark
 6. Mechanical references/die positionning (first pixel)

REFERENCE: Z REFERENCE: XY All Dimensions In Millimeter

Die Flatness ≤ 50 μm Die Axis Angle ≤ 0.2°

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

www.DataSheAtmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602

44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906

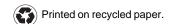
Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France


Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel® and combinations thereof, are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.

