
®

ARM946E-S
Microprocessor Core
with Cache

J u n e 2 0 0 1

Technical
Manual

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ii
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Document DB14-000104-00, First Edition (June 2001)
This document describes Rev 0A of the LSI Logic Corporation ARM946E-S and
will remain the official reference source for all revisions/releases of this product
until rescinded by an update.

To receive product literature, visit us at http://www.lsilogic.com.

LSI Logic Corporation reserves the right to make changes to any products herein
at any time without notice. LSI Logic does not assume any responsibility or
liability arising out of the application or use of any product described herein,
except as expressly agreed to in writing by LSI Logic; nor does the purchase or
use of a product from LSI Logic convey a license under any patent rights,
copyrights, trademark rights, or any other of the intellectual property rights of
LSI Logic or third parties.

Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT
The LSI Logic logo design, CoreWare, and Right-First-Time are registered
trademarks or trademarks of LSI Logic Corporation. ARM is a registered
trademark of ARM Limited, used under license. All other brand and product
names may be trademarks of their respective companies.

BM

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual iii
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Preface

This book is the primary reference and Technical Reference Manual for
the ARM946E-S. It contains a complete functional description for the
product and includes complete physical and electrical specifications for
this product.

Audience

This document assumes that you have some familiarity with
microprocessors and related support devices. The people who benefit
from this book are:

• Engineers and managers who are evaluating the processor for
possible use in a system

• Engineers who are designing the processor into a system

Organization

This document has the following chapters and appendixes:

Chapter 1, Introduction, provides an introduction to the ARM946E-S.

Chapter 2, Signal Descriptions, describes the signals used in the
ARM946E-S.

Chapter 3, Programmer’s Model, describes the programmer’s model of
the ARM946E-S and includes a summary of the ARM946E-S
coprocessor registers.

Chapter 4, Caches, describes the ARM946E-S cache implementation.

Chapter 5, Protection Unit, describes the ARM946E-S protection unit.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

iv Preface
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 6, Tightly Coupled SRAM, describes the requirements and
operation of the tightly coupled SRAM.

Chapter 7, Bus Interface Unit and Write Buffer, describes the
operation of the Bus Interface Unit and write buffer.

Chapter 8, External Coprocessor Interface, describes the coprocessor
interface and the operation of common coprocessor instructions.

Chapter 9, Debug Interface, describes the debug support for the
ARM946E-S and the EmbeddedICE-RT logic.

Chapter 10, ETM Interface, describes the ETM interface, including
details of how to enable the interface.

Chapter 11, Test Support, describes the test methodology used for the
ARM946E-S synthesized logic and tightly coupled SRAM.

Appendix A, AC Parameters, describes the timing parameters applicable
to the ARM946E-S.

Related Publications

ARM Architecture Reference Manual available from ARM Ltd. as
document No. ARM DDI 0100.

ARM9E-S Technical Reference Manual available from ARM Ltd. as
document No.ARM DDI 0165.

AMBA Specification (Rev 2.0) available from ARM Ltd. as document No.
ARM IHI 0011.

Embedded Trace Macrocell Specification (Rev 1.0) available from ARM
Ltd. as document number IHI 0014E.

Standard Test Access Port and Boundary-Scan Architecture, IEEE Std.
1149.1-1990

Conventions Used in This Manual

The first time a word or phrase is defined in this manual, it is italicized.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Preface v
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

The word assert means to drive a signal true or active. The word
deassert means to drive a signal false or inactive. Signals that are active
LOW end in an “n.”

Hexadecimal numbers are indicated by the prefix “0x”—for example,
0x32CF. Binary numbers are indicated by the prefix “0b”—for example,
0b0011.0010.1100.1111.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

vi Preface
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual vii
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Contents

Chapter 1 Introduction
1.1 About the ARM946E-S 1-1
1.2 Microprocessor Block Diagram 1-2

1.2.1 ARM9E-S Processor Core 1-4
1.2.2 System Controller 1-4
1.2.3 CP15 System Control Coprocessor 1-4
1.2.4 Data and Instruction Caches and Control 1-5
1.2.5 Protection Unit 1-5
1.2.6 Instruction and Data SRAMs 1-5
1.2.7 AHB Interface Unit and Write Buffer 1-5
1.2.8 External Coprocessor Interface 1-6
1.2.9 JTAG and Debug Interface Port 1-6
1.2.10 Embedded Trace Module Interface 1-6

1.3 CoreWare® Program 1-6

Chapter 2 Signal Descriptions
2.1 Signal Properties and Requirements 2-1
2.2 Clock Interface Signals 2-5
2.3 AHB Signals 2-5
2.4 Instruction RAM Signals 2-8
2.5 Data RAM Signals 2-10
2.6 Instruction Cache Signals 2-11
2.7 Data Cache Signals 2-15
2.8 Coprocessor Interface Signals 2-20
2.9 Debug Signals 2-22
2.10 JTAG Signals 2-24
2.11 Miscellaneous Signals 2-25
2.12 ETM Interface Signals 2-25
2.13 ATPG Scan Control Signals 2-30

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

viii Contents
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 3 Programmer’s Model
3.1 About the ARM946E-S Programmer’s Model 3-1
3.2 About the ARM9E-S Programmer’s Model 3-2
3.3 CP15 Registers 3-2

3.3.1 Accessing CP15 Registers 3-4
3.3.2 ID Code Register (0) 3-5
3.3.3 Cache Type Register (0) 3-6
3.3.4 Tightly Coupled Memory Size Register (0) 3-9
3.3.5 Control Register (1) 3-11
3.3.6 Cache Configuration Registers (2) 3-13
3.3.7 Write Buffer Control Register (3) 3-14
3.3.8 Access Permission Registers (5) 3-15
3.3.9 Protection Region/Base Size (PR/BS)

Registers (6) 3-19
3.3.10 Cache Operations Register (7) 3-22
3.3.11 Cache Lockdown Registers (9) 3-25
3.3.12 Tightly Coupled Memory Region Registers (9) 3-26
3.3.13 Trace Process Identifier Register (13) 3-29
3.3.14 Cache Debug Index Register (15) 3-31

3.4 CP14 Registers 3-34
3.4.1 Debug Comms Channel Status Register (C0) 3-34
3.4.2 Debug Status Register (C2) 3-35

Chapter 4 Caches
4.1 Cache Architecture 4-1
4.2 I-Cache 4-5

4.2.1 Enabling and Disabling the I-Cache 4-5
4.2.2 I-Cache Operation 4-5
4.2.3 I-Cache Validity 4-6
4.2.4 I-Cache Flush 4-6

4.3 D-Cache 4-7
4.3.1 Enabling and Disabling the D-Cache 4-7
4.3.2 D-Cache Operation 4-7
4.3.3 D-Cache Validity 4-9
4.3.4 D-Cache Clean and Flush 4-9

4.4 Cache Lockdown 4-11
4.4.1 Locking Down the Caches 4-12

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Contents ix
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 5 Protection Unit
5.1 About the Protection Unit 5-1
5.2 Enabling the Protection Unit 5-2
5.3 Memory Regions 5-2

5.3.1 Region Base Address 5-2
5.3.2 Region Size 5-3
5.3.3 Partition Attributes 5-3

5.4 Overlapping Regions 5-3
5.5 Background Regions 5-4

Chapter 6 Tightly Coupled SRAM
6.1 ARM946E-S SRAM Requirements 6-1
6.2 Using CP15 Control Register 6-2

6.2.1 Enabling the I-SRAM 6-2
6.2.2 Disabling the I-SRAM 6-3
6.2.3 I-SRAM Load Mode 6-3
6.2.4 Enabling and Disabling the D-SRAM 6-4
6.2.5 D-SRAM Load Mode 6-4

Chapter 7 Bus Interface Unit and Write Buffer
7.1 About the BIU and Write Buffer 7-1
7.2 AHB Bus Master Interface 7-2

7.2.1 About the AHB 7-2
7.2.2 ARM946E-S Transfer Descriptions 7-3
7.2.3 Burst Sizes 7-3
7.2.4 Line Fetch Transfers 7-3
7.2.5 Back-to-Back Line Fetches 7-4
7.2.6 Uncached Transfers 7-5
7.2.7 Burst Accesses 7-5
7.2.8 Bursts Crossing 1 Kbyte Boundary 7-6

7.3 Noncached Thumb Instruction Fetches 7-6
7.4 AHB Clocking 7-7

7.4.1 CLK-to-HCLK Skew 7-8
7.5 Write Buffer 7-10

7.5.1 Write Buffer Operation 7-11
7.5.2 Enabling and Disabling the Write Buffer 7-12
7.5.3 Using Self-Modifying Code 7-12

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

x Contents
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 8 External Coprocessor Interface
8.1 About the External Coprocessor Interface 8-1
8.2 Coprocessor Instructions 8-2
8.3 LDC/STC Instructions 8-3

8.3.1 Coprocessor Handshake States 8-5
8.3.2 Coprocessor Handshake Encoding 8-6
8.3.3 Multiple External Coprocessors 8-6

8.4 MCR/MRC Instructions 8-7
8.5 Interlocked MCR Instructions 8-8
8.6 CDP Instructions 8-9
8.7 Privileged Instructions 8-10
8.8 Busy-Waiting and Interrupts 8-10

Chapter 9 Debug Interface
9.1 Debug Systems 9-1

9.1.1 Debug Host 9-2
9.1.2 Protocol Converter 9-2
9.1.3 ARM946E-S Debug Target 9-3

9.2 Debug Operations Overview 9-4
9.3 Debug Using the Serial Interface and TAP Controller 9-5

9.3.1 Serial Registers 9-5
9.3.2 TAP Controller State Machine 9-6
9.3.3 Scan Chains 9-12
9.3.4 Debug Access to the Caches 9-17

9.4 Debug Using the EmbeddedICE-RT 9-18
9.4.1 Disabling EmbeddedICE-RT 9-20
9.4.2 Debug Communications Channel 9-20
9.4.3 Debug Comms Channel Registers 9-21
9.4.4 Communications Using the Comms Channel 9-21

9.5 Breakpoints, Watchpoints, and Debug Requests 9-22
9.5.1 Entry into Debug State on Breakpoint 9-23
9.5.2 Breakpoints and Exceptions 9-24
9.5.3 Watchpoints 9-24
9.5.4 Watchpoints and Exceptions 9-26
9.5.5 Debug Request 9-27
9.5.6 Actions of the ARM9E-S in Debug State 9-27

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Contents xi
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

9.6 Determining the Core and System State 9-27
9.7 Real-Time Debug 9-28
9.8 ARM9E-S Clock Domains 9-29
9.9 Synchronizing Debug Clocks 9-29

Chapter 10 ETM Interface
10.1 About the ETM 10-1

10.1.1 Trace Port 10-1
10.1.2 Triggering Facilities 10-2

10.2 ETM Interface 10-2
10.3 Enabling the ETM Interface 10-3

Chapter 11 Test Support
11.1 About the ARM946E-S Test Methodology 11-1
11.2 Scan Insertion and ATPG 11-1
11.3 BIST of Memory Arrays 11-2

Appendix A AC Parameters
A.1 Timing Diagrams 11-1
A.2 AC Timing Parameter Definitions 11-10

Index

Customer Feedback

Figures
1.1 ARM946E-S Block Diagram 1-3
2.1 ARM946E-S Signal Diagram 2-3
3.1 MRC and MCR Instruction Format 3-4
3.2 ID Code Register 3-5
3.3 Cache Type Register 3-6
3.4 Tightly Coupled Memory Size Register 3-9
3.5 Control Register 3-11
3.6 Instruction/Data Cacheable Bits Register 3-14
3.7 Write Buffer Control Register 3-15

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

xii Contents
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

3.8 Instruction/Data Access Permission (I/DAP)
Register (Extended) 3-16

3.9 Instruction/Data Access Permission (I/DAP)
Register (Standard) 3-18

3.10 PR/BS Register 3-20
3.11 Index and Set Format 3-23
3.12 Address Format 3-24
3.13 Cache Lockdown Register 3-26
3.14 Tightly Coupled Memory Region Register Format 3-27
3.15 Trace Process ID Register 3-29
3.16 Test State Register 3-30
3.17 Cache Debug Index Register - Index/Set Format 3-32
3.18 Data Format for Tag Read/Write Operations 3-32
3.19 Debug Comms Channel Status Register 3-34
3.20 Coprocessor 14 Debug Status Register 3-36
4.1 Example 8 Kbyte Cache 4-2
4.2 Access Address for a 4 Kbyte Cache 4-3
4.3 Register 7, Rd Format 4-10
5.1 ARM946E-S Protection Unit 5-1
5.2 Overlapping Memory Regions 5-4
6.1 SRAM Read Cycle 6-2
7.1 Line Fetch Transfer 7-4
7.2 Back-to-Back Line Fetches 7-5
7.3 Nonsequential Uncached Accesses 7-5
7.4 Data Burst Followed by Instruction Fetch 7-6
7.5 Crossing a 1 Kbyte Boundary 7-6
7.6 AHB Clock Relationships 7-8
7.7 ARM946E-S CLK to AHB HCLK Sampling 7-9
8.1 Coprocessor Clocking 8-2
8.2 LDC/STC Cycle Timing 8-3
8.3 MCR/MRC Transfer Timing with Busy-Wait 8-7
8.4 Interlocked MCR Timing with Busy-Wait 8-8
8.5 Late Cancelled CDP Instruction 8-9
8.6 Privileged Instructions 8-10
8.7 Busy-Waiting and Interrupts 8-11
9.1 Typical Debug System 9-2
9.2 ARM9E-S Processor and Debug Logic 9-3
9.3 TAP Controller State Diagram 9-7

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Contents xiii
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

9.4 Tag Address Format 9-17
9.5 Cache Index Register Format 9-18
9.6 The ARM9E-S, Tap Controller, and EmbeddedICE-RT 9-19
9.7 Breakpoint Timing 9-23
9.8 Watchpoint Entry with Data Processing Instruction 9-25
9.9 Watchpoint Entry with Branch 9-26
9.10 Clock Synchronization Logic 9-30
10.1 ARM946E-S ETM Interface 10-3
A.1 Clock, Reset, and AHB Enable Timing 11-2
A.2 AHB Bus Request and Grant Related Timing 11-2
A.3 AHB Bus Master Timing 11-3
A.4 Coprocessor Interface Timing 11-4
A.5 Debug Interface Timing 11-5
A.6 JTAG Interface Timing 11-6
A.7 DBGSDOUT to DBGTDO Timing 11-7
A.8 Exception and Configuration Timing 11-7
A.9 INTEST Wrapper Timing 11-8
A.10 ETM Interface Timing 11-9

Tables
3.1 CP15 Register Map 3-3
3.2 CP15 Abbreviations 3-4
3.3 Accessing PR/BS Registers 3-20
3.4 Cache Operations 3-22
3.5 Index Fields for Supported Cache Sizes 3-23
3.6 Cache Debug Operations 3-31
3.7 Tag and Index Fields for Supported Cache Sizes 3-33
3.8 Coprocessor 14 Register Map 3-34
4.1 Tag and Index Fields for Supported Cache Sizes 4-4
4.2 Cd Bit Function 4-8
4.3 Calculating Index Addresses 4-10
7.1 Supported Burst Types 7-3
7.2 Data Write Modes 7-11
8.1 Coprocessor Handshake States 8-5
8.2 Handshake Encoding 8-6
9.1 Test Access Port Instruction Descriptions 9-10
9.2 ARM946E-S Scan Chain Functions 9-12

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

xiv Contents
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

9.3 Scan Chain 1 Bit Allocation 9-13
9.4 Scan Chain 2 Bit Allocation 9-14
9.5 Scan Chain 15 Bit Allocation 9-15
9.6 Mapping of Scan Chain 15 Address Field to CP15

Registers 9-15
9.7 Coprocessor 14 Register Map 9-21
A.1 Timing Parameter Definitions 11-10

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual 1-1
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 1
Introduction

This chapter introduces the ARM946E-S microprocessor core. It contains
the following sections:

• Section 1.1, “About the ARM946E-S”

• Section 1.2, “Microprocessor Block Diagram”

• Section 1.3, “CoreWare® Program”

1.1 About the ARM946E-S

The ARM946E-S is a synthesizable macrocell that includes an ARM
processor. The ARM9E-S processor is a member of the ARM9 Thumb
family of high-performance, 32-bit system-on-a-chip processor solutions.

The ARM946E-S has a tightly coupled SRAM memory, and both
instruction and data caches. It is targeted for a wide range of embedded
applications where high performance, low system cost, small die size,
and low power are all important.

The ARM946E-S macrocell is a Harvard architecture, cached processor
that provides a complete high-performance subsystem. The ARM946E-
S includes:

• ARM9E-S RISC integer processor core:

The processor uses the ARMv5TExP 32-bit instruction set with
improved ARM/Thumb code interworking and an enhanced multiplier
designed for improved DSP performance.

The processor has an ARM debug architecture with additional
support for real-time debug. This capability allows critical exception
handlers to execute while debugging the system.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

1-2 Introduction
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

• Tightly coupled instruction and data SRAM interfaces. You can
configure the size of the instruction and data SRAMs to suit the
needs of your design implementation.

• Instruction and data caches. You can easily modify your design to
allow any combination of caches from 4 Kbytes to 1 Mbyte.

• Protection Unit. This unit allows you to segment and protect memory
in a simple manner. This feature is ideal for embedded control
applications.

• AMBA AHB bus interface. ARM946E-S uses unified address and
data buses to interface to the rest of the system. This interface is
compatible with the AMBA AHB bus standard.

• External coprocessor support. This capability allows the addition of
floating-point or other application-specific hardware accelerators. For
coprocessor support, the instruction and data buses are exported
along with simple handshaking signals.

• Scan testing and Built-In Self-Test (BIST) support. This feature
provides scan test capability for the standard cell logic and BIST for
the tightly coupled SRAM and caches.

• Interface to an external Embedded Trace Macrocell (ETM). The ETM
provides support for real-time tracing of instructions and data.

Providing this complete high-frequency subsystem allows system-on-
a-chip designers to concentrate on design issues unique to their system.
The synthesizable nature of the device eases integration into ASIC
technologies.

1.2 Microprocessor Block Diagram

The ARM946E-S block diagram is shown in Figure 1.1. A brief
description of each block follows the diagram.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Microprocessor Block Diagram 1-3
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 1.1 ARM946E-S Block Diagram

AHB
Bus Interface Unit
and Write Buffer

Instruction
SRAM External

Coprocessor
Interface

ETM
Interface

Instruction
Cache

Memory
Protection

Unit

DinDin

Instruction
Cache
Control

System Control
Coprocessor

(CP15)

Data
Cache

Data
Cache
Control

System
Controller

Data
SRAM

IA

ARM9E-S

INSTR RDATA

DA

Core WDATA

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

1-4 Introduction
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

1.2.1 ARM9E-S Processor Core

The ARM9E-S processor core has a Harvard bus architecture with
separate instruction and data interfaces. This design allows concurrent
instruction and data accesses, and greatly reduces the cycles per
instruction of the processor. For optimal performance, single-cycle
memory accesses for both interfaces are required, although the core can
be stalled for nonsequential accesses or slower memory systems.

The processor is implemented using a five-stage pipeline:

• Instruction Fetch (F)

• Instruction Decode (D)

• Execute (E)

• Data Memory Access (M)

• Register Write (W)

ARM implementations are fully interlocked, so that software functions
identically across different implementations without concern for pipeline
effects.

Refer to the ARM9E-S Technical Reference Manual for more information
about the processor core.

1.2.2 System Controller

The system controller oversees the interactions between the Instruction
RAM, Data RAM, and the Bus Interface Unit. It controls internal
arbitration between the blocks and stalls the appropriate blocks when
required.

1.2.3 CP15 System Control Coprocessor

The processor core uses a set of registers in the CP15 Coprocessor to
control the functionality of the RAMs and the Write Buffer. These
registers are accessed using the coprocessor instructions MCR and
MRC.

Refer to Chapter 3 for more information about CP15.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Microprocessor Block Diagram 1-5
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

1.2.4 Data and Instruction Caches and Control

The ARM946E-S has separate data and instruction caches. Each cache
is direct mapped, or either 2-way or 4-way set associative. The D-cache
and I-cache use a physical address from the processor core, and have
a cache update policy of allocate on a read miss. The D-cache and
I-cache are reloaded one cache line (eight words) at a time through the
external interface.

Refer to Chapter 4 for more information about the data and instruction
caches.

1.2.5 Protection Unit

The Protection Unit makes it possible to partition memory into eight
regions of variable size and to set individual attributes for each memory
region.

Refer to Chapter 5 for more information about the Protection Unit.

1.2.6 Instruction and Data SRAMs

The ARM946E-S incorporates internal instruction and data memories to
allow high-speed operation without incurring the performance penalties
of accessing the system bus. The Instruction and Data RAMs each
consist of blocks of ASIC library compiled RAM. The RAM sizes can be
of any size up to 1 Mbyte. The instruction and data memories can have
different sizes.

Refer to Chapter 6 for more information about the Instruction and Data
RAMS.

1.2.7 AHB Interface Unit and Write Buffer

The Advanced High-Performance Bus (AHB) is a new generation of
AMBA bus, which meets the requirements of high-performance
synthesizable designs. The AHB Interface Unit arbitrates between the
sources of external bus transactions within the ARM946E-S. It stalls all
other accesses until the current request has been completed.

The Write Buffer is a 16-entry FIFO. It increases system performance.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

1-6 Introduction
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Refer to Chapter 7 for more information about the AHB interface and
Write Buffer.

1.2.8 External Coprocessor Interface

The ARM946E-S supports the connection of coprocessors through the
external coprocessor interface. All types of ARM coprocessor instructions
are supported. Coprocessors determine the instructions they need to
execute using a pipeline follower in the coprocessor.

Refer to Chapter 8 for more information about the External Coprocessor
Interface.

1.2.9 JTAG and Debug Interface Port

The JTAG and Debug Interface (not shown in Figure 1.1) is based on
IEEE Standard 1149.1-1990. The interface makes it possible to stop the
processor core on a given instruction fetch (breakpoint), data access
(watchpoint), or external debug request. The JTAG interface allows serial
insertion of instructions into the pipeline of the core without using the
external data bus.

Refer to Chapter 9 for more information about the JTAG and Debug
Interface.

1.2.10 Embedded Trace Module Interface

This interface connects to an external Embedded Trace Module (ETM).
The ETM provides a high-speed port for tracing the processor core in
real time.

Refer to Chapter 10 for more information about the ETM interface.

1.3 CoreWare® Program

The CoreWare program consists of three main elements:

1. A library of cores

2. A design development and simulation package

3. Expert applications support

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CoreWare® Program 1-7
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

The CoreWare library contains a wide range of complex cores based on
accepted and emerging industry standards from high-speed interconnect
and digital video to DSP and microprocessors. LSI Logic provides a
complete framework for device and system development and simulation.
LSI Logic has advanced ASIC technologies that consistently produce
Right-First-Time™ silicon. The LSI Logic in-house experts provide design
support from system architecture definition through chip layout and test
vector generation.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

1-8 Introduction
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual 2-1
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 2
Signal Descriptions

This chapter describes the ARM946E-S microprocessor signals. It
contains the following sections:

• Section 2.1, “Signal Properties and Requirements”

• Section 2.2, “Clock Interface Signals”

• Section 2.3, “AHB Signals”

• Section 2.4, “Instruction RAM Signals”

• Section 2.5, “Data RAM Signals”

• Section 2.6, “Instruction Cache Signals”

• Section 2.7, “Data Cache Signals”

• Section 2.8, “Coprocessor Interface Signals”

• Section 2.9, “Debug Signals”

• Section 2.10, “JTAG Signals”

• Section 2.11, “Miscellaneous Signals”

• Section 2.12, “ETM Interface Signals”

• Section 2.13, “ATPG Scan Control Signals”

2.1 Signal Properties and Requirements

The following design features ensure easier integration of the
ARM946E-S into embedded applications and simplify synthesis flow:

• A single rising edge clock times all activity

• All signals and buses are unidirectional

• All inputs are required to be synchronous to the single clock

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-2 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

These features simplify the definition of the top-level ARM946E-S
signals, because all outputs change from the rising edge and all inputs
are sampled on the rising edge of the clock. In addition, all signals are
either input or output only; bidirectional signals are not used.

Note: You must use external logic to synchronize asynchronous
signals (for example, interrupt sources) before applying
them to the ARM946E-S macrocell.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Signal Properties and Requirements 2-3
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 2.1 ARM946E-S Signal Diagram

HADDR[31:0]
HBURST[2:0]

HBUSREQ
HGRANT

HLOCK
HPROT[3:0]

HRDATA[31:0]
HREADY

HRESETn
HRESP[1:0]
HSIZE[2:0]

HTRANS[1:0]
HWDATA[31:0]

HWRITE

AHB

Coprocessor
Interface

CHSDE[1:0]
CHSEX[1:0]

CPCLKEN
CPDIN[31:0]

CPDOUT[31:0]
CPINSTR[31:0]

CPLATECANCEL
CPPASS
CPTBIT

nCPMREQ
nCPTRANS

Instruction
RAM

IADDR[19:3]
IENABLEEVEN

IRDATAEVEN[31:0]

IWDATA[31:0]
IWEEVEN[3:0]
IWEODD[3:0]

COMMRX
COMMTX
DBGACK
DBGDEWPT
DBGEN
DBGEXT[1:0]
DBGIEBKPT
DBGINSTREXEC
DBGRNG[1:0]

DBGRQI

DBGTCKEN

EDBGRQ

Debug

CLK

HCLKEN

Clock

ARM946E-S

Interface
CLKEN

IENABLEODD
IRAMSize[3:0]

IRDATAODD[31:0]

CMFlushIAdrs
CMFlushIAll
CMWrIICTag
ICacheAdrs[15:0]
ICacheAssoc[1:0]
ICacheData[32:0]
ICacheSize[3:0]
IHit[3:0]
IIndexDly[12:0]
IRepIIndex
IRepIPntr[1:0]
ISet[0:3}Data[31:0]
ISet{0:3}En
ISet[0:3]Tag[21:0]
ISet[0:3]We
ITagAdrs[12:0]
ITagData[21:0]
ITagSet[0:3]En
ITagSet[0:3]WE
IValid[3:0]
IValidSet
IValidWe
PCDbgWDATA4_2[4:2]

I-Cache

SCANEN
SI

SO

ATPG
Scan

Control

BIGENDOUT
nFIQ
nIRQ

VINITHI

Misc

DADDR[19:2]
DENABLE

DRDATA[31:0]
DWDATA[31:0]
DWE[3:0]

Data
RAM

DRAMSize[3:0]

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-4 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 2.1 ARM946E-S Signal Diagram (cont.)

DBGIR[3:0
DBFnTRST

DBGnTDOEN
DBGSCREG[4:0]

DBGSDIN
DBGSDOUT

DBGTAPSM[3:0]
DBGTCKEN

DBGTDI
DBGTDO
DBGTMS

TAPID[31:0]

ETMBIGEND
ETMCHSD[1:0]
ETMCHSE[1:0]

ETMDA[31:0]
ETMDABORT
ETMDBGACK

ETMDMAS[1:0]
ETMDMORE

ETMDnMREQ
ETMDnRW
ETMDSEQ

ETMEN
ETMHIVECS
ETMIA[31:1]

ETMID31To24[31:24]
ETMID15To8{15:8]

ETMInMREQ
ETMINSTREXEC

ETMISEQ
ETMITBIT

ETMLATECANCEL
ETMnWAIT
ETMPASS

ETMRDATA[31:0]

ETMPROCID[31:0]
ETMPROCIDWR

TAPID[31:0]

ETM
Interface

ARM946E-S

CaptureDirtyHi
CaptureDirtyLo
ClearDirty
CMClearDirty
CMFlushDAdrs
CMFlushDAll
CMFlushDIndex
CMWrDCTag
DCacheAdrsL[14:0]
DCacheAdrsU[14:0]
DCacheAssoc[1:0]
DCacheData[32:0]
DCacheSize[3:0]
DHit[3:0]
DIndexDly[12:0]
DReplIndex
DReplPntr[1:0]
DSet[0:3]EnL
DSet[0:3]EnU
DSet[0:3]LData[31:0]
DSet[0:3]Tag[31:0]
DSet[0:3]UData[31:0]
DSet[0:3]We0L
DSet[0:3]WE1L
DSet[0:3]We2L
DSet[0:3]We3L
DSet[0:3]We0U
DSet[0:3]We1U
DSet[0:3]We2U
DSet[0:3]We3U
DTagAdrs[12:0]
DTagData[21:0]
DTagSet[0:3]En
DTagSet[0:3]We
DValid[3:0]
DValidSet
DValidWe
ReplDirtyHi
ReplDirtyLo
WrHitBable
WRHitBufAdrs[17:4]
WrHitRamWe
WrHitSet[3:0]

D-Cache

ETMIABORT

ETMINSTRVALID

ETMRNGOUT
ETMWDATA[31:0]

JTAG

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Clock Interface Signals 2-5
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

2.2 Clock Interface Signals

The following information describes the ARM946E-S clock interface
signals.

CLK System Clock Input
This clock times all operations in the ARM946E-S core.
All outputs change from the rising edge, and all inputs
are sampled on the rising edge. The clock can be
stretched in either phase.

When HCLKEN is HIGH, CLK also times AHB
operations.

When DBGTCKEN is HIGH, CLK also times debug
operations.

CLKEN System Clock Enable Output
CLKEN is the ARM946E-S system clock enable. CLKEN
goes LOW to indicate a stall condition.

DBGTCKEN JTAG Debug Logic Enable Input
This signal provides a synchronous enable for debug
logic accessed using the JTAG interface. When
DBGTCKEN is HIGH, the debug logic can advance on
the rising edge of CLK.

HCLKEN AHB Clock Enable Input
This signal provides a synchronous enable for AHB
transfers. When HIGH, it indicates that the next rising
edge of CLK is also a rising edge of HCLK in the AHB
system where the ARM946E-S is embedded. HCLKEN
must be tied HIGH in systems where CLK and HCLK are
the same frequency.

2.3 AHB Signals

The following information describes the ARM946E-S AHB signals.

HADDR[31:0] Address Bus Output
HADDR[31:0] is the 32-bit AHB system address bus.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-6 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

HBURST[2:0] Burst Type Output
This output indicates whether or not the transfer forms
part of a burst. Both four beat and eight beat bursts are
supported, where a beat is a clock tick. The ARM946E-S
generates only incrementing bursts, because cache fills
are zero-word first.

HBUSREQ Bus Request Output
When asserted, this signal indicates that the
ARM946E-S requires the bus.

HGRANT Bus Grant Input
When asserted, this signal indicates that the
ARM946E-S is currently the highest priority master.
Ownership of the address/control signals changes at the
end of a transfer when HREADY is HIGH. When both
HREADY and HGRANT are HIGH, the ARM946E-S gets
access to the bus.

HLOCK Request Locked Transfers Output
When HIGH, this signal indicates that the ARM946E-S
requires locked access to the bus and no other master
should be granted access until this signal has gone LOW.
The ARM946E-S asserts HLOCK when executing SWP
instructions to AHB address space.

HPROT[3:0] Protection Control Output
This output provides information about a bus access that
is useful to modules that implement some level of
protection.

HBURST[2:0] Burst Type Description

000 SINGLE Single transfer

001 INCR Incrementing burst of
unspecified length

011 INCR4 4-beat incrementing burst

101 INCR8 8-beat incrementing burst

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

AHB Signals 2-7
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

The HPROT[3:0] signals provide the information shown
below.

HRDATA[31:0]
Read Data Bus Input
During read operations, this 32-bit bus transfers data
from a selected bus slave to the ARM946E-S.

HREADY Transfer Done Input
When HIGH, this signal indicates that a bus transfer has
finished. A selected bus slave can drive this signal LOW
to extend a transfer.

HRESETn Not Reset Input
This signal must be asynchronously asserted LOW to
initialize the ARM946E-S system state. It must be
deasserted synchronously.

HRESP[1:0] Transfer Response Input
These signals contain a transfer response from the
selected slave. They provide additional status transfer
information. The responses are shown below:

HPROT3
Cacheable

HPROT2
Bufferable

HPROT1
Supervisor

HPROT0
Data/Opcode Description

– – – 0 Opcode Fetch

– – – 1 Data Access

– – 0 – User Access

– – 1 – Supervisor Access

– 0 – – Not Bufferable

– 1 – – Bufferable

0 – – – Not Cacheable

1 – – – Cacheable

HRESP[1:0] Description

0b00 Okay

0b01 Error

0b10 Retry

0b11 Split

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-8 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

HSIZE[2:0] Transfer Size Output
These signals indicate the size of an ARM946E-S
transfer. Bit 2 is tied LOW. The transfer sizes are:

HTRANS[1:0] Transfer Type Output
These signals indicate the ARM946E-S transfer type. The
transfer types are:

HWDATA[31:0]
Write Data Bus Output
This 32-bit bus transfers data from the ARM946E-S to a
selected bus slave during write operations.

HWRITE Transfer Direction Output
When HWRITE is HIGH, it indicates this is a write
transfer. When the signal is LOW, it indicates this is a
read transfer.

2.4 Instruction RAM Signals

The instruction RAM is split into two banks, even and odd. Both banks
get the same address and write data, but they have separate write
enables so only one bank is written at a time. The muxing of the data
read from the RAMs is performed inside the core.

IADDR[19:3] Instruction RAM Address Output
This 17-bit bus contains the Instruction RAM address and
handles address for a 1 Mbyte address range.
Addressing is performed on word boundaries, so bits 0
and 1 are not needed. Bit 2 is replaced by the even and
odd select signals.

HSIZE[2:0] Transfer Size

0b000 Byte

0b001 Halfword

0b010 Word

HTRANS[1:0] Transfer Type

0b00 Idle

0b01 Nonsequential

0b10 Sequential

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Instruction RAM Signals 2-9
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

IENABLEEVEN
Word-Based Instruction Chip Enable Even Output
Driving this signal LOW disables the clock on the even
instruction RAM and saves power. The RAMs do not
have to connect to this pin. The function is not changed
if the RAMs ignore the enable and clock every cycle.

IENABLEODD
Word-Based Instruction Chip Enable Odd Output
Driving this signal LOW disables the clock on the odd
Instruction RAM.

IRAMSize[3:0]
Instruction RAM Size Input
These signals specify the size of the Instruction RAM.

IRDATAEVEN[31:0]
Instruction RAM Read Data Even Input
This 32-bit bus contains data read from the even
Instruction RAM.

IRDATAODD[31:0]
Instruction RAM Read Data Odd Input
This 32-bit bus contains data read from the odd
Instruction RAM.

IWDATA[31:0] Instruction RAM Write Data Output
This 32-bit bus contains write data for the Instruction
RAM.

IRAMSize[3:0] RAM Size

0b0000 0 Kbyte

0b0011 4 Kbytes

0b0100 8 Kbytes

0b0101 16 Kbytes

0b0110 32 Kbytes

0b0111 64 Kbytes

0b1000 128 Kbytes

0b1001 256 Kbytes

0b1010 512 Kbytes

0b1011 1 Mbyte

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-10 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

IWEEVEN[3:0]
Byte-Based Instruction Write Enable Even Output
These signals are byte write enables. Asserting any one
of the IWEEVEN[3:0] signals HIGH enables a write to the
corresponding data byte in the even Instruction RAM.

IWEODD[3:0] Byte-Based Instruction Write Enable Odd Output
These signals are byte write enables. Asserting one of
the IWEODD[3:0] signals HIGH enables a write to the
corresponding data byte in the odd Instruction RAM.

2.5 Data RAM Signals

The data RAM is one logical bank of memory.

DADDR[19:2] Data RAM Address Output
This 18-bit bus contains the Data RAM address.
Addressing is performed on word boundaries, so bits 0
and 1 are not needed. Bits [19:2] address a 1 Mbyte
address space.

DENABLE Word-Based Data Chip Enable Output
Driving this signal LOW disables the Data RAM clock and
saves power. The RAMs do not have to connect to this
pin. The function is not changed if the RAMs ignore the
enable and clock every cycle.

IWEEVEN
Enables
Data Bits

3 31:24

2 23:16

1 15:8

0 7:0

IWEODD
Enables
Data Bits

3 31:24

2 23:16

1 15:8

0 7:0

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Instruction Cache Signals 2-11
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

DRAMSize[3:0]
Data RAM Size Input
These signals specify the Data RAM size.

DRDATA[31:0]
Data RAM Read Data Input
This 32-bit bus contains data read from the Data RAM.

DWDATA[31:0]
Data RAM Write Data Output
This 32-bit bus contains write data for the Data RAM.

DWE[3:0] Byte-Based Data Write Enable Output
These bits are byte write enable signals. Asserting one of
these signals HIGH enables writes to the corresponding
bits in the Data RAM.

2.6 Instruction Cache Signals

The instruction cache signals support 1, 2, or 4 sets of RAMs. Each set
has an Instruction RAM that contains the instructions and a tag RAM that

DRAMSize[3:0]

0b0000 0 Kbyte

0b0011 4 Kbytes

0b0100 8 Kbytes

0b0101 16 Kbytes

0b0110 32 Kbytes

0b0111 64 Kbytes

0b1000 128 Kbytes

0b1001 256 Kbytes

0b1010 512 Kbytes

0b1011 1 Mbyte

DWE
Enable Write
to Data Bits

3 31:24

2 23:16

1 15:8

0 7:0

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-12 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

holds the address information needed for hit detection. There are also
signal connections to the A946ESIValid module, which contains the valid
bits for the instruction cache.

CMFlushIAdrs
Cache Maintenance Flush Inst. Cache Adrs. Output
Asserting this signal HIGH resets the valid bit associated
with the instruciton cache address if the address
presented by the CPU is a hit.

CMFlushIAll Cache Maintenance Flush All Inst. Cache Output
Asserting this signal HIGH synchronously resets all the
instruction cache valid bits.

CMWrICTag Cache Maintenance Write Inst. Cache Tag Output
Asserting this signal HIGH writes the value in bit 4 of the
PCDbgWDATA4_2 signal into the valid bit selected by the
IIndexDly and IReplPntr signals.

ICacheAdrs[15:0]
Instruction Cache Address Output
These 16 bits hold the instruction RAM address, which is
a word address that allows using RAMs that hold up to
256 Kbytes.

ICacheAssoc[1:0]
Instruction Cache Associativity Input
These bits specify the associativity of the instruction
cache.

ICacheData[32:0]
Instruction Cache Data Output
This bus contains data to be written to the instruction set
RAMs.

ICacheAssoc[1:0] Encoding

00 Direct Mapped

01 Two Way

10 Four Way

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Instruction Cache Signals 2-13
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

ICacheSize[3:0]
Instruction Cache Size Input
These bits specify the size of the instruction cache.

IHit[3:0] Instruction Cache Hit Output
Each IHit[3:0] bit corresponds to instruction cache set
[3:0]. When there is a hit on an instruction cache set, the
corresponding IHIT[3:0] bit is driven HIGH.

IIndexDly[12:0]
Instruction Cache Index Delayed Output
These bits are a delayed version of the index used to
select valid bits.

IReplIndex Instruction Cache Replacement Index Output
This bit is the index of a line that is being replaced.

IReplPntr[1:0] Instruction Cache Replacement Pointer Output
These bits point to the instruction cache set that will be
affected when a Cache Maintenance operation uses the
index/set addressing mode.

ISet0Data[31:0], ISet1Data[31:0], ISet2Data[31:0], ISet3Data[31:0]
Instruction Set 0, 1, 2, 3 Data Input
This 32-bit bus contains data read from the instruction
cache Set 0, 1, 2, or 3 RAM.

ISet0En, ISet1En, ISet2En, ISet3En
Instruction Set 0, 1, 2, 3 Enable Output
Driving this signal HIGH enables the clock on the Set 0,
1, 2, or 3 instruction RAM. Driving it LOW disables the

ICacheSize[3:0] Encoding

0b0000 0 Kbyte

0b0011 4 Kbytes

0b0100 8 Kbytes

0b0101 16 Kbytes

0b0110 32 Kbytes

0b0111 64 Kbytes

0b1000 128 Kbytes

0b1001 256 Kbytes

0b1010 512 Kbytes

0b1011 1 Mbyte

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-14 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

clock, which saves power. The RAMs do not have to
connect to this pin. The function is not changed if the
RAMs ignore the enable and clock every cycle.

ISet0Tag[21:0] , ISet1Tag[21:0], ISet2Tag[21:0], ISet3Tag[21:0]
Instruction Set 0, 1, 2, 3 Tag Input
These bits contains data read from the instruction cache
Set 0, 1, 2, or 3 Tag RAM.

ISet0We, ISet1We, ISet2We, ISet3We
Instruction Set 0, 1, 2, 3 Write Enable Output
Asserting this signal HIGH enables word writes to the
Set 0, 1, 2, or 3 instruction RAM.

ITagAdrs[12:0]
Instruction Cache Tag Address Output
This 13-bit bus contains the address for the instruction
tag RAMs.

ITagData[21:0]
Instruction Cache Tag Data Output
This bus contains write data for the instruction tag RAMs.

ITagSet0En, ITagSet1En, ITagSet2En, ITagSet3En
Instruction Tag Set 0, 1, 2, 3 Enable Output
Driving this signal HIGH enables the clock on the Set 0,
1, 2, or 3 Tag RAM. Driving it LOW disables the clock,
which saves power. The RAMs do not have to connect to
this pin. The function is not changed if the RAMs ignore
the enable and clock every cycle.

ITagSet0We, ITagSet1We, ITagSet2We, ITagSet3We
Instruction Tag Set 0, 1, 2, 3 Word
Write Enable Output
Asserting this signal HIGH enables word writes to the
Set 0, 1, 2, or 3 Tag RAM.

IValid[3:0] Instruction Cache Valid bits Input
These bits are the instruction cache valid bits. There is
one valid bit for each instruction cache set. Individual
valid bits are selected by the index portion of the cache
address.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Data Cache Signals 2-15
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

IValidSet Instruction Cache Valid Set Output
This signal is driven HIGH to set the selected valid bit,
and it is driven LOW to clear the valid bit. It is used when
a new line is loaded into the instruction cache.

IValidWe Instruction Cache Valid Write Enable Output
This signal is the write enable for the valid bits. It is used
when a new line is loaded into the instruction cache.

PCDbgWDATA4_2[4:2]
Prot/CP15 to Cache Debug Write Data Output
These bits write the valid bit on the instruction cache and
the valid and dirty bits on the data cache during a cache
maintenance operation.

2.7 Data Cache Signals

The data cache signals support 1, 2, or 4 RAM sets. Each set has an
upper and lower data RAM and one tag RAM. The data RAMs hold data,
and the tag RAMs hold the address information needed for a hit
detection. In addition, there are signals that provide an interface to the
A946ESDValid and A946ESDDirty modules. These modules contain the
data cache valid and dirty bits, respectively.

CaptureDirtyHi
Capture Dirty Bit High Input
This is the ReplDirtyHi signal delayed by one clock. The
cache maintenance state machine uses this signal.

CaptureDirtyLo
Capture Dirty Bit Low Input
This is the ReplDirtyLo signal delayed by one clock. The
cache maintenance state machine uses this signal.

ClearDirty Clear Dirty Bit Output
Asserting this signal clears the dirty bits for a line after a
new line replaces it.

CMClearDirty Cache Maintenance Clear Dirty Bit Output
This signal is a one-cycle pulse that clears the dirty bits
in the addressed line.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-16 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

CMFlushDAdrs
Cache Maintenance Flush Data Cache Adrs Output
Asserting this signal HIGH resets a valid bit if the address
presented by the CPU is a hit.

CMFlushDAll
Cache Maintenance Flush All Data Cache Output
Asserting this signal HIGH synchronously resets all the
data cache valid bits.

CMFlushDIndex
Cache Maintenance Flush Data Cache Index Output
Asserting this signal HIGH resets the valid bit pointed to
by the Index.

CMWrDCTag
Cache Maintenance Write Data Cache Tag Output
Asserting this signal HIGH sets the valid bit pointed to by
the Index.

DCacheAdrsL[14:0]
Data Cache Address Lower Output
These bits contain the word address for the lower data
set RAMs. This word address range allows the use of
RAMs that are up to 128 Kbytes in size.

DCacheAdrsU[14:0]
Data Cache Address Upper Output
These bits contain the word address for the upper data
set RAMs. This word address range allows the use of
RAMs that are up to 128 Kbytes in size.

DCacheAssoc[1:0]
Data Cache Associativity Input
These bits specify the associativity of the data cache.

DCacheData[32:0]
Data Cache Data Output
This bus contains data to be written to the data set
RAMs.

DCacheAssoc[1:0] Encoding

0b00 Direct Mapped

0b01 Two Way

0b10 Four Way

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Data Cache Signals 2-17
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

DCacheSize[3:0]
Data Cache Size Input
These bits specify the size of the data cache.

DHit[3:0] Data Cache Hit Output
Each DHit[3:0] bit corresponds to data cache set [3:0].
When there is a hit on an data cache set, the
corresponding DHit[3:0] bit is driven HIGH.

DIndexDly[12:0]
Data Cache Index Delayed Output
These bits are a delayed version of the index used to
select valid bits.

DReplIndex Data Cache Replacement Index Output
This bit is the index of the line being replaced.

DReplPntr[1:0]
Data Cache Replacement Pointer Output
These bits point to the data cache set that is affected
when a Cache Maintenance operation uses the index/set
addressing mode.

DSet0EnL, DSet1EnL, DSet2EnL, DSet3EnL
Data Set 0, 1, 2, 3 Lower Enable Output
Driving this signal HIGH enables the clock on the Set 0,
1, 2, or 3 Lower RAM. Driving it LOW disables the clock,
which saves power. The RAMs do not have to connect to
this pin. The function is not changed if the RAMs ignore
the enable and clock every cycle.

DCacheSize[3:0] Encoding

0b0000 0 Kbyte

0b0011 4 Kbytes

0b0100 8 Kbytes

0b0101 16 Kbytes

0b0110 32 Kbytes

0b0111 64 Kbytes

0b1000 128 Kbytes

0b1001 256 Kbytes

0b1010 512 Kbytes

0b1011 1 Kbytes

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-18 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

DSet0EnU, DSet1EnU, DSet2EnU, DSet3EnU
Data Set 0, 1, 2, 3 Upper Enable Output
Driving this signal HIGH enables the clock on the Set 0,
1, 2, or 3 Upper RAM. Driving it LOW disables the clock,
which saves power. The RAMs do not have to connect to
this pin. The function is not changed if the RAMs ignore
the enable and clock every cycle.

DSet0LData[31:0], DSet1LData[31:0], DSet2LData[31:0],
DSet3LData[31:0]
Data Set 0, 1, 2, 3 Lower Data Input
This 32-bit bus contains data read from the lower data
cache Set 0, 1, 2, or 3 RAM.

DSet0Tag[31:0],DSet1Tag[31:0], DSet2Tag[31:0], DSet3Tag[31:0]
Data Set 0, 1, 2, or 3 Tag Input
This 32-bit bus contains data read from the data cache
Set 0, 1, 2, or 3 Tag RAM.

DSet0UData[31:0], DSet1UData[31:0], DSet2UData[31:0],
DSet3UData[31:0]
Data Set 0, 1, 2, 3 Upper Data Input
This 32-bit bus contains data read from the upper data
cache Set 0, 1, 2. or 3 RAM.

DSet0We0L, DSet1We0L, DSet2We0L, DSet3We0L
Data Set 0, 1, 2, 3 Write Enable Byte 0, LowerOutput
Asserting this signal HIGH enables writing to data bits
[7:0] in the Lower RAM of data set 0, 1, 2, or 3.

DSet0We1L, DSet1We1L, DSet2We1L, DSet3We1L
Data Set 0, 1, 2, 3 Write Enable Byte 1, LowerOutput
Asserting this signal HIGH enables writing to data
bits [15:8] in the Lower RAM of data set 0, 1, 2, or 3.

DSet0We2L, DSet1We2L, DSet2We2L, DSet3We2L
Data Set 0, 1, 2, 3 Write Enable Byte 2, LowerOutput
Asserting this signal HIGH enables writing to data
bits [23:16] in the Lower RAM of data set 0, 1, 2, or 3.

DSet0We3L, DSet1We3L, DSet2We3L, DSet3We3L
Data Set 0, 1, 2, 3 Write Enable Byte 3, LowerOutput
Asserting this signal HIGH enables writing to data
bits [31:24] in the Lower RAM of data set 0, 1, 2, or 3.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Data Cache Signals 2-19
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

DSet0We0U, DSet1We0U, DSet2We0U, DSet3We0U
Data Set 0, 1, 2, 3 Write Enable Byte 0, Upper Output
Asserting this signal HIGH enables writing to data
bits [7:0] in the Upper RAM of data set 0, 1, 2, or 3.

DSet0We1U, DSet1We1U, DSet2We1U, DSet3We1U
Data Set 0, 1, 2, 3 Write Enable Byte 1, Upper Output
Asserting this signal HIGH enables writing to data
bits [15:8] in the Upper RAM of data set 0, 1, 2, or 3.

DSet0We2U, DSet1We2U, DSet2We2U, DSet3We2U
Data Set 0, 1, 2, 3 Write Enable Byte 2, Upper Output
Asserting this signal HIGH enables writing to data
bits [23:16] in the Upper RAM of data set 0, 1, 2, or 3.

DSet0We3U, DSet1We3U, DSet2We3U, DSet3We3U
Data Set 0, 1, 2, 3 Write Enable Byte 3, Upper Output
Asserting this signal HIGH enables writing to data
bits [31:24] in the Upper RAM of data set 0, 1, 2, or 3.

DTagAdrs[12:0]
Data Cache Tag Address Output
This bus contains the address for the data tag RAMs.

DTagData[21:0]
Data Cache Tag Data Output
This bus contains data to be written to the data tag
RAMs.

DTagSet0En, DTagSet1En, DTagSet2En, DTagSet3En,
Data Set 0, 1, 2, 3 Tag Enable Output
Driving this signal HIGH enables the clock on the Set 0,
1, 2, or 3 Tag RAM. Driving it LOW disables the clock,
which saves power. The RAMs do not have to connect to
this pin. The function is not changed if the RAMs ignore
the enable and clock every cycle.

DTagSet0We, DTagSet1We, DTagSet2We, DTagSet3We,
Data Set 0, 1, 2, 3 Tag Write Enable Output
Asserting this signal HIGH enables writing to the Set 0,
1, 2, or 3 Tag RAM.

DValid[3:0] Data Cache Valid Bits Input
These bits are the data cache valid bits. There is one
valid bit for each data cache set. Individual valid bits are
selected by the index portion of the cache address.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-20 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

DValidSet Data Cache Valid Set Output
Driving this signal HIGH sets the selected valid bit, and
driving it LOW clears the valid bit. It is used when a new
line is loaded into cache.

DValidWe Data Cache Valid Write Enable Output
This signal is the valid bit write enable. It is used when a
new line is loaded into the data cache.

ReplDirtyHi Replacement Dirty Bit High Input
This signal controls the dirty bit for the upper half of the
line being replaced.

ReplDirtyLo Replacement Dirty Bit Low Input
This signal controls the dirty bit for the lower half of the
line being replaced.

WrHitBable Write Hit Bufferable Output
This signal is driven HIGH for write back, and it is driven
LOW for write through. The dirty bits are set in write back
mode only.

WrHitBufAdrs[17:4]
Write Hit Buffer Address Output
These bits contain the address of the write hit buffer.

WrHitRamWe
Write Hit RAM Write Enable Output
This signal is driven HIGH for a data cache write. Note
that the dirty bits are set on a write hit.

WrHitSet[3:0]
Write Hit Set Output
Each WrHitSet[3:0] bit corresponds to a data cache set.
When one of these bits is HIGH, the associated data
cache dirty bit will set on a write hit.

2.8 Coprocessor Interface Signals

This section describes the ARM946E-S coprocessor interface signals.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Coprocessor Interface Signals 2-21
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

CHSDE[1:0] Coprocessor Handshake Decode Input
These inputs are the handshake signals from the decode
stage of the coprocessor pipeline follower.

CHSEX[1:0] Coprocessor Handshake Execute Input
These inputs are the handshake signals from the execute
stage of the coprocessor pipeline follower.

CPCLKEN Coprocessor Clock Enable Output
This signal provides a synchronous enable for the
coprocessor pipeline follower. When CPCLKEN is HIGH,
the pipeline follower logic advances on the rising edge of
CLK.

CPDIN[31:0] Coprocessor Write Data Input
This 32-bit bus is the coprocessor write data bus for
transferring data from the coprocessor.

CPDOUT[31:0]
Coprocessor Read Data Output
This 32-bit bus is the coprocessor read data bus for
transferring data to the coprocessor.

CPINSTR[31:0]
Coprocessor Instruction Data Output
This 32-bit bus is the coprocessor instruction data bus for
transferring instructions to the coprocessor pipeline
follower.

CPLATECANCEL Output
If this signal is HIGH during the first memory cycle of a
coprocessor instruction, the coprocessor must cancel the

CHSDE[1:0] Encoding

00 Wait

01 Go

10 Absent

11 Last

CHSEX[1:0] Encoding

00 Wait

01 Go

10 Absent

11 Last

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-22 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

instruction without changing any internal state. This
signal is only asserted in cycles when the previous
instruction caused a data abort.

CPPASS Coprocessor Pass Output
When HIGH, this signal indicates that there is a
coprocessor instruction in the execute stage of the
pipeline that must be executed.

CPTBIT Coprocessor Instruction Thumb Bit Output
When CPTBIT is HIGH, the ARM946E-S is in the Thumb
state. When this signal is LOW, the ARM946E-S is in the
ARM state. The coprocessor pipeline follower samples
this signal.

nCPMREQ Not Coprocessor Instruction Request Output
When this signal is LOW and CPCLKEN is HIGH on the
rising edge of CLK, then the instruction on the
CPINSTR[31:0] data bus must enter the coprocessor
pipeline.

nCPTRANS Not Coprocessor Memory Translate Output
When this signal is LOW, the ARM946E-S is in User
mode. When the signal is HIGH, the ARM946E-S is in
Privileged mode. The coprocessor pipeline follower
samples this signal.

2.9 Debug Signals

The following information describes the ARM946E-S debug signals.

COMMRX Communications Channel Receive Output
When HIGH, this signal indicates that the
communications channel receive buffer contains valid
data that is waiting to be read.

COMMTX Communications Channel Transmit Output
When HIGH, this signal indicates that the
communications channel transmit buffer is empty.

DBGACK Debug Acknowledge Output
When HIGH, this signal indicates that the processor is in
debug state.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Debug Signals 2-23
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

DBGDEWPT Data Watchpoint Input
External hardware asserts this signal to halt execution of
the processor for debug purposes. If this signal is HIGH
at the end of a data memory request cycle, it causes the
ARM946E-S to enter debug state.

DBGEN Debug Enable Input
When HIGH, this signal enables the debug features of the
processor. Tie this signal LOW if debug is not required.

DBGEXT[1:0] EmbeddedICE-RT External Input Input
These inputs to the EmbeddedICE-RT logic make
breakpoints/watchpoints dependent on external
conditions.

DBGIEBKPT Instruction Breakpoint Input
External hardware asserts this signal to halt execution of
the processor for debug purposes. If this signal is HIGH
at the end of an instruction fetch, it causes the
ARM946E-S to enter the debug state when the
instruction reaches the execute stage of the processor
pipeline.

DBGINSTREXEC
Instruction Executed Output
When this signal is HIGH, it indicates the processor
executed the instruction in the execute stage of the
processor pipeline.

DBGRNG[1:0] EmbeddedICE-RT Range Out Output
These signals indicate that the corresponding
EmbeddedICE-RT watchpoint register matches the
conditions currently present on the address, data, and
control buses. These signals are independent of the state
of the watchpoint enable control bit.

DBGRQI Internal Debug Request Output
This signal is the debug request that is presented to the
core debug logic. It is a combination of EDBGRQ and bit
1 of the Debug Control Register.

EDBGRQ External Debug Request Input
An external debugger asserts this signal to force the
processor to enter the debug state.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-24 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

2.10 JTAG Signals

The following information describes the ARM946E-S JTAG signals.

DBGIR[3:0] TAP Controller Instruction Register Output
These four bits reflect the current instruction loaded in the
TAP controller instruction register. They change when the
TAP controller is in the UPDATE-IR state.

DBGnTRST Not Test Reset Input
This active-LOW input is the internally synchronized reset
signal for the EmbeddedICE-RT internal state.

DBGnTDOEN Not DBGTDO Enable Output
When LOW, this signal indicates that there is serial data
on the DBGTDO output. Normally, this signal is used as
an output enable for a DBGTDO pin in a packaged part.

DBGSCREG[4:0]
Scan Chain ID Output
These five bits reflect the ID number of the scan chain
currently selected by the TAP controller. They change
when the TAP controller is in the UPDATE-DR state.

DBGSDIN External Scan Chain Serial Input Data Output
This output contains the serial data for an external scan
chain.

DBGSDOUT External Scan Chain Serial Data Output Input
DBGSDOUT contains serial data from an external scan
chain. Tie this signal LOW when an external scan chain
is not connected.

DBGTAPSM[3:0]
TAP Controller State Machine Output
This bus reflects the current state of the TAP controller
state machine.

DBGTCKEN Test Clock Enable Input
This signal is the synchronous enable test clock.

DBGTDI Test Data In Input
This signal is the test data input to the debug logic.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Miscellaneous Signals 2-25
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

DBGTDO Test Data Out Output
This signal is the test data output from the debug logic.

DBGTMS Test Mode Select Input
This signal is the TAP controller test mode select.

TAPID[31:0] Boundary Scan ID Code Input
These signals specify the ID code value shifted out on
DBGTDO when the IDCODE instruction is entered in the
TAP controller.

2.11 Miscellaneous Signals

This section describes miscellaneous ARM946E-S signals.

BIGENDOUT Big Endian Output
When this signal is HIGH, the ARM946E-S handles
memory data bytes using the big-endian format. When
LOW, memory data is handled as little endian.

nFIQ Not Fast Interrupt Request Input
When an external source drives this signal LOW, it
causes a Fast Interrupt Request (FIQ) exception in the
processor. nFIQ must be synchronous with CLK.

nIRQ Not Interrupt Request Input
When an external source drives this signal LOW, it
causes a normal Interrupt Request (IRQ) exception in the
processor. nIRQ must be synchronous with CLK.

VINITHI Exception Vector Location at Reset Input
This signal determines the reset location of the exception
vectors. When VINITHI is LOW, the vectors are located
at 0x00000000. When it is HIGH, the vectors are located
at 0xFFFF0000.

2.12 ETM Interface Signals

This section describes the ARM946E-S ETM interface signals.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-26 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

ETMBIGEND Endian Mode Output
This output indicates the endian mode for the ETM.
When this signal is HIGH, the mode is big endian; when
ETMBIGEND is LOW, the mode is little endian.

ETMCHSD[1:0]
ETM Coprocessor Handshake Decode Output
These outputs are the handshake signals from the
decode stage of the coprocessor’s pipeline follower.

ETMCHSE[1:0]
ETM Coprocessor Handshake Execute Output
These outputs are the handshake signals from the
execute stage of the coprocessor’s pipeline follower.

ETMDA[31:0] ETM Data Address Output
This 32-bit bus contains the ETM data address.

ETMDABORT ETM Data Abort Output
Assertion of this signal indicates a data abort to the
ARM9E-S core.

ETMDBGACK
ETM Debug Mode Indication Output
When HIGH, this signal indicates that the processor is in
debug state.

ETMCHSD[1:0] Encoding

10 ABSENT

00 WAIT

01 GO

11 LAST

ETMCHSE[1:0] Encoding

10 ABSENT

00 WAIT

01 GO

11 LAST

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ETM Interface Signals 2-27
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

ETMDMAS[1:0]
ETM Data Size Indicator Output
These signals indicate the data size of the ETM. They
become valid in the same cycle as the data address bus.

ETMDMORE ETM Sequential Data Indication Output
The ETMDMORE signal is active during load and store
multiple instructions and only goes HIGH when
ETMDnMREQ is LOW. This signal effectively gives the
same information as ETMDSEQ, but one cycle ahead.
This information allows external logic more time to
decode sequential cycles.

ETMDnMREQ ETM Data Memory Request Output
This signal is asserted HIGH when the ARM946E-S is
making a request to ETM data memory.

ETMDnRW ETM Data R/W Output
If this signal is LOW at the end of the cycle, then any data
memory access in the following cycle is a read; if this
signal is HIGH, then the access is a write.

ETMDSEQ ETM Sequential Data Indication Output
If this signal is HIGH at the end of the cycle, then any
data memory access in the following cycle is sequential
from the last data memory access.

ETMEN ETM Enable Input
When this signal is HIGH, the ETM is enabled and the
ARM9E-S interface signals are driven out of this module,
pipelined by one clock stage.

ETMHIVECS Exception Vector Location Output
When this output is LOW, the ARM9E-S exception
vectors start at address 0x0000.0000. When this signal is
HIGH, the ARM9E-S exception vectors start at address
0xFFFF.0000. This output is a static configuration signal.

ETMDMAS[1:0] Transfer Size

00 Byte

01 Halfword

10 Word

11 Reserved

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-28 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

ETMIA[31:1] ETM Instruction Address Bus Output
This 31-bit bus contains the address for the ETM.

ETMIABORT ETM Instruction Abort Output
This signal is asserted HIGH to abort an ETM instruction.

ETMID31To24[31:24]
Bits [31:24] of the TAPID Register Output
These outputs reflect the status of bits [31:24] of the
Device Identification (ID) code Test Data Register.

ETMID15To8[15:8]
Bits [15:8] of the TAPID Register Output
These outputs reflect the status of bits [15:8] of the
Device Identification (ID) code Test Data Register.

ETMInMREQ ETM Instruction Memory Request Output
The ARM946E-S drives this output LOW to indicate that
an instruction fetch will take place.

ETMINSTREXEC
ETM Instruction Execute Indicator Output
Assertion HIGH of this output indicates that the
instruction in the execute stage of the processor pipeline
has been executed.

ETMINSTRVALID
ETM Valid Instruction Output
This signal is the valid instruction indication for the ETM.

ETMISEQ ETM Sequential Instruction Output
The ETMISEQ signal indicates whether the fetch is
sequential (HIGH) or nonsequential (LOW) to the
previous access.

ETMITBIT ETM Thumb Indication Output
When this signal is LOW, the processor is in ARM state,
and 32-bit instructions are fetched. When ETMITBIT is
HIGH, the processor is in Thumb state, and 16-bit
instructions are fetched.

ETMLATECANCEL
ETM Coprocessor Late Cancel Indicator Output
If this output is HIGH during the first memory cycle of a
coprocessor instruction, then the coprocessor should
cancel the instruction without changing any internal state.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ETM Interface Signals 2-29
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

This signal is only asserted in cycles where the previous
instruction accessed memory and a data abort occurred.

ETMnWAIT ETM Clock Stall Output
When this output is LOW, it indicates the processor is
stalled.

ETMPASS ETM Coprocessor Instruction
Execute Indicator Output
A HIGH on this signal indicates that there is a
coprocessor instruction in the execute stage of the
pipeline, which must be executed.

ETMPROCID[31:0]
ETM Process ID Output
These signals are the Process Identifier for the ETM.

ETMPROCIDWR
ETM Process ID Write Strobe Output
This signal is the ETMPROCID write strobe.

ETMRDATA[31:0]
ETM Read Data Output
This 32-bit bus contains ETM read data.

ETMRNGOUT ETM Watchpoint Register Match Output
This output indicates that the corresponding
EmbeddedICE watchpoint register has matched the
conditions currently present on the address, data, and
control buses. This signal is independent of the state of
the watchpoint’s enable control bit.

ETMWDATA[31:0]
ETM Write Data Output
This 32-bit bus contains ETM write data.

TAPID[31:0] Boundary Scan ID Code Input
This bus specifies the ID Code value shifted out on
DBGTDO when the IDCODE instruction is entered into
the TAP Controller.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

2-30 Signal Descriptions
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

2.13 ATPG Scan Control Signals

SCANEN Scan Enable Input
Asserting this signal HIGH enables scanning data
through the scan chain.

SI Scan Chain In Input
SI is the input for the serial scan chain. There is one SI
pin for each scan chain.

SO Scan Chain Out Output
SO is the output of the serial scan chain. There is one
SO pin for each scan chain.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual 3-1
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 3
Programmer’s Model

This chapter describes the programmer’s model for the ARM946E-S. It
contains the following sections:

• Section 3.1, “About the ARM946E-S Programmer’s Model”

• Section 3.2, “About the ARM9E-S Programmer’s Model”

• Section 3.3, “CP15 Registers”

• Section 3.4, “CP14 Registers”

3.1 About the ARM946E-S Programmer’s Model

The programmer’s model for the ARM946E-S primarily consists of the
ARM9E-S core programmer’s model (see Section 3.2, “About the
ARM9E-S Programmer’s Model,” on page 3-2). Additions to this model
are required to control the operation of the ARM946E-S internal
coprocessors and any coprocessor connected to the external
coprocessor interface.

There are two internal coprocessors within the ARM946E-S:

• CP14

CP14, which is located within the ARM9E-S core, allows software
access to the debug communications channel. The registers defined
in CP14 are accessible with MCR and MRC instructions, and are
described in Section 3.4, “CP14 Registers” on page 3-34.

• CP15

CP15 allows configuration of the caches, tightly coupled SRAM,
protection unit, write buffer, and other ARM946E-S system options.
The registers defined in CP15 are accessible with MCR and MRC

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-2 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

instructions, and are described in Section 3.3, “CP15 Registers,” on
page 3-2.

Registers and operations provided by any coprocessors attached to the
external coprocessor interface are accessible with appropriate
coprocessor instructions.

3.2 About the ARM9E-S Programmer’s Model

The ARM9E-S processor core implements the ARMv5TExP architecture,
which includes the 32-bit ARM instruction set and the 16-bit Thumb
instruction set. For a description of both instruction sets, see the ARM
Architecture Reference Manual. Contact ARM for complete descriptions
of both instruction sets.

The ARM9E-S uses the base restored Data Abort model, which differs
from the base updated Data Abort model implemented by ARM7TDMI.

The difference in the ARM9E-S Data Abort model affects only a very
small section of operating system code, the Data Abort handler. It does
not affect user code. With the base restored Data Abort model, when a
Data Abort exception occurs during the execution of a memory access
instruction, the processor hardware always restores the base register to
the value it had before the instruction was executed. This action
eliminates the requirement that the Data Abort handler unwind any base
register update the aborted instruction might have caused.

The base restored Data Abort model significantly simplifies the Data
Abort handler software.

3.3 CP15 Registers

The ARM946E-S incorporates CP15 for system control. CP15 allows
configuration of the caches, tightly coupled SRAM, protection unit, write
buffer, and other ARM946E-S system options—such as big- or
little-endian operation. Table 3.1 shows the CP15 register map.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-3
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Table 3.1 CP15 Register Map

Register Read Write

0 ID code1

1. Register location provides access to more than one register. The register accessed depends on the
value of the opcode_2 or CRm field. See the register description for details.

Unpredictable

0 Cache type1 Unpredictable

0 Tightly coupled memory size1 Unpredictable

1 Control Control

2 Cache configuration2

2. Separate registers for instruction and data. See the register description for details.

Cache configuration2

3 Write buffer control Write buffer control

4 Unpredictable Unpredictable

5 Access permission2 Access permission2

6 Protection region base and size1 Protection region base and size1

7 Unpredictable Cache operations

8 Unpredictable Unpredictable

9 Cache lockdown2 Cache lockdown2

9 Tightly coupled memory region2 Tightly coupled memory region2

10 Unpredictable Unpredictable

11 Unpredictable Unpredictable

12 Unpredictable Unpredictable

13 Process ID Process ID

14 Unpredictable Unpredictable

15 Test state1 Test state1

15 Cache debug index1 Cache debug index1

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-4 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

3.3.1 Accessing CP15 Registers

Table 3.2 defines some of abbreviations and terms used in the register
descriptions.

Reading from or writing any data values to the CP15 registers, including
those fields specified as unpredictable or RWZ/RWO, does not cause
any permanent damage.

HRESETn clears to 0 all CP15 register bits that are defined and contain
state, except AVS (bit 13) in Register 1. When HRESETn is asserted
LOW, the the VINITHI core input pin drives the AVS bit HIGH or LOW.

The two Tightly Coupled Memory Region registers indicate the physical
size of the Instruction and Data SRAMs.

You must be in privileged mode to access the CP15 registers with the
MRC and MCR instructions.

Figure 3.1 shows the MRC and MCR instruction format.

Figure 3.1 MRC and MCR Instruction Format

The assembler syntax for these instructions is:

Table 3.2 CP15 Abbreviations

Abbreviation Term Description

UNP Unpredictable For reads, the data returned when reading from this location
is unpredictable. It can have any value.
For writes, writing to this location causes unpredictable
behavior, or an unpredictable change in device configuration.

UND Undefined An instruction that accesses CP15 in the manner indicated
takes the undefined instruction trap.

RWZ Reserved
Write zero

These bits are reserved. Write zeros to all bits in this field.

RWO Reserved
Write one

These bits are reserved. Write ones to all bits in this field.

31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

Cond 1110 opcode_1 L CRn Rd 1111 opcode_2 1 CRm

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-5
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

MCR/MRC{cond} p15, opcode_1, Rd, CRn, CRm, opcode_2

The processor takes an undefined instruction trap if any of the following
instructions attempt to access CP15: CDP, LDC, and STC, or
unprivileged MRC and MCR instructions.

The CRn field of the MRC and MCR instructions specifies which
coprocessor register to access. The CRm field and opcode_2 field
specify a particular action when addressing registers.

Attempting to read from a nonreadable register or writing to a nonwritable
register causes unpredictable results.

For all instructions that access CP15, the opcode_1, opcode_2, and
CRm fields should be 0, except when the values specified are used to
select an operation. Using other values results in unpredictable behavior.

3.3.2 ID Code Register (0)

This is a read-only register that returns a 32-bit device ID code. The ID
code register is accessed by reading CP15 register 0 with the opcode_2
field set to any value other than 1 or 2. For example:

MRC p15, 0, rd, c0, c0, {0,3–7}; returns ID register

Figure 3.2 shows the ID Code register format.

Figure 3.2 ID Code Register

I Implementor [31:24]
This field specifies the implementor and has a value of
0x41.

R Reserved [23:20]
This field is reserved and has a value of 0x00.

AR Architecture Revision [19:16]
This field identifies the revision level of the architecture.

31 24 23 20 19 16 15 4 3 0

I R AR PN V

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-6 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

PN Part Number [15:4]
This field specifies the part number. In this case, the part
number is 0x946.

V Version [3:0]
This field contains the hardware version number, which is
implementation specific.

3.3.3 Cache Type Register (0)

This is a read-only register that contains information about the size and
architecture of the instruction cache (I-cache) and data cache (D-cache).
It also allows operating systems to establish how to perform operations,
such as cache cleaning and lockdown. Future ARM cached processors
will contain this register, allowing RTOS vendors to produce future-proof
versions of their operating systems.

The Cache Type register is accessed by reading CP15 register 0 with the
opcode_2 field set to 1. For example:

MRC p15, 0, Rd, c0, c0, 1; returns cache details

Figure 3.3 shows the register format.

Figure 3.3 Cache Type Register

R Reserved [31:29], [23:22], [11:10]
These fields are reserved and have a value 0.

CT Cache Type [28:25]
This field specifies the cache type and has a value of
0b0111. This value means the cache provides:

H Harvard/Unified 24
This bit specifies the cache architecture. This value is 1,
because the ARM946E-S uses a Harvard architecture.

31 29 28 25 24 23 22 21 18 17 15 14 13 12 11 10 9 6 5 3 2 1 0

R CT H R DCS DCA DB DW R ICS ICA IB IW

- Cache clean-step operation

- Cache flush-step operation

- Lockdown capability

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-7
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

DCS Data Cache Size [21:18]
This field indicates the data cache size. The actual value
is implementation dependent. The encoding for the cache
size bits is shown below.

DCA Data Cache Associativity [17:15]
This field indicates the data cache associativity. The
encoding is shown below.

The actual value depends on the implementation and is
defined by the implementor. If the design has a data
cache, the associativity for that cache is set to 0b010 to
indicate a 4-way set associative cache.

DB Data Cache Base Size 14
This bit indicates the data cache base size. The value is
implementation dependent. If there is a data cache, this
bit is cleared to 0 to indicate that the cache type
parameters are valid. If there is no data cache, this bit is
set to 1 to indicate the data cache is not present.

DW Data Cache Words per Line [13:12]
This field specifies the data cache words per line. The
value is 0b10, which specifies 8 words per line.

Value of Bits
[21:18] Cache Size

0b0000 0 Kbytes

0b0011 4 Kbytes

0b0100 8 Kbytes

0b0101 16 Kbytes

0b0110 32 Kbytes

0b0111 64 Kbytes

0b1000 128 Kbytes

0b1001 256 Kbytes

0b1010 512 Kbytes

0b1011 1 Mbyte

Value Associativity

0b000 Direct mapped

0b001 2-way set associative

0b010 4-way set associative

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-8 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

ICS Instruction Cache Size [9:6]
This field indicates the instruction cache size, and the
value is implementation dependent. The bit encoding is
shown below.

ICA Instruction Cache Associativity [5:3]
This field indicates the instruction cache associativity.
The encoding is shown below.

The actual value depends on the implementation and is
defined by the implementor. If the design has an
instruction cache, the associativity for that cache is set
to 0b010 to indicate a 4-way set associative cache.

IB Instruction Cache Base Size 2
This bit specifies the instruction cache base size. The
value is implementation dependent. If there is an
instruction cache, this bit is cleared to 0 to indicate that
the cache type parameters are valid. If there is no
instruction cache, this bit is set to 1 to indicate the
instruction cache is not present.

Value of
Bits [9:6] Cache Size

0b0000 0 Kbytes

0b0011 4 Kbytes

0b0100 8 Kbytes

0b0101 16 Kbytes

0b0110 32 Kbytes

0b0111 64 Kbytes

0b1000 128 Kbytes

0b1001 256 Kbytes

0b1010 512 Kbytes

0b1011 1 Mbyte

Value Associativity

0b000 Direct mapped

0b001 2-way set associative

0b010 4-way set associative

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-9
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

IW Instruction Cache Word per Line [1:0]
This field specifies the instruction cache words per line.
The value is 0b10, which is 8 words per line.

Note: The cache base size and cache size fields are generated within
the cache block so designs with different cache sizes do not have to be
resynthesized.

3.3.4 Tightly Coupled Memory Size Register (0)

This is a read-only register that returns the size of the tightly coupled
instruction and data RAMs included within the ARM946E-S.

To access the Tightly Coupled Memory Size register, read CP15
register 0 with the opcode_2 field set to 2. For example:

MRC p15, 0, rd, c0, c0, 2; returns tightly coupled memory
size register

Figure 3.4 shows the register format.

Figure 3.4 Tightly Coupled Memory Size Register

R Reserved [31:22], [17:15], [13:10]. [5:3], [1:0]
These fields are reserved and have a value 0.

DRS Data RAM Size [21:18]
This field specifies the Data RAM size. It is
implementation specific. The values are generated within
the memory blocks, which allows changing the memory
size without resynthesizing the full design. The bit
encoding is shown below.

31 22 21 18 17 15 14 13 10 9 6 5 3 2 1 0

R DRS R DA R IRS R IA R

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-10 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

DA Data RAM Absent 14
If this bit is set. the Data RAM is not present. If it is clear,
the Data RAM is present.

IRS Instruction RAM Size [9:6]
This field specifies the instruction RAM size. It is
implementation specific. The values are generated within
the memory blocks, which allows changing the memory
size without resynthesizing the full design. The bit
encoding is shown below.

Value of
bits [21:18] Data RAM Size

0b0000 0 Kbytes

0b0011 4 Kbytes

0b0100 8 Kbytes

0b0101 16 Kbytes

0b0110 32 Kbytes

0b0111 64 Kbytes

0b1000 128 Kbytes

0b1001 256 Kbytes

0b1010 512 Kbytes

0b1011 1 Mbyte

Value of
bits [9:6]

Instruction
RAM Size

0b0000 0 Kbytes

0b0011 4 Kbytes

0b0100 8 Kbytes

0b0101 16 Kbytes

0b0110 32 Kbytes

0b0111 64 Kbytes

0b1000 128 Kbytes

0b1001 256 Kbytes

0b1010 512 Kbytes

0b1011 1 Mbyte

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-11
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

IA Instruction RAM Absent 2
If this bit is set, the Instruction RAM is not present. If it is
clear, the Instruction RAM is present.

3.3.5 Control Register (1)

This register contains the ARM946E-S control bits. All reserved bits must
be written with either 0 or 1, as indicated below, or written using
read-modify-write. The reserved bits have an unpredictable value when
read. To read and write this register:

MRC p15, 0, rd, c1, c0, 0; read control register
MCR p15, 0, rd, c1, c0, 0; write control register

Figure 3.5 shows the register format.

Figure 3.5 Control Register

RWZ Reserved - Write Zero [31:20], [11:8], 1
These bits are reserved. Write zeros to these bits.

ILM Instruction RAM Load Mode 19
When this bit is set to 1, you can use the instruction RAM
load mode to initialize the instruction RAM. This mode
allows you to load data into ARM registers from either
data cache or main memory, and then write to the same
address but within the tightly coupled instruction RAM.
This capability allows you to copy boot code from
memory located at address 0x0 into the instruction RAM
which, when enabled, also exists at address 0x0. The
operation of the load mode is described in Section 6.2.3,
“I-SRAM Load Mode,” on page 6-3.

At reset, this bit is cleared.

IRE Instruction RAM Enable 18
When this bit is set to 1, the instruction RAM is enabled,
and all instruction and data accesses to the instruction
RAM address range access the instruction RAM.

At reset, this bit is cleared.

31 20 19 18 17 16 15 14 13 12 11 8 7 6 3 2 1 0

RWZ ILM IRE DLM DRE CDL RR AVS IE RWZ EDN RWO DE R
WZ PE

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-12 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

DLM Data RAM Load Mode 17
When this bit is set to 1, you can use the data RAM load
mode for initializing the data RAM. First, do a load data
into ARM registers from either the data cache or main
memory. Then store the data from the ARM registers into
the tightly coupled data RAM using the same address
from which the data originated. The operation of the load
mode is described in Section 6.2.3, “I-SRAM Load Mode,”
on page 6-3.

At reset, this bit is cleared.

DRE Data RAM Enable 16
When this bit is set to 1, the data RAM is enabled. Then
the data RAM takes precedence over the data cache and
AHB for data accesses.

At reset, this bit is cleared.

CDL Configure Disable Loading TBIT 15
This bit controls the behavior of load PC instructions.
When cleared to 0, the ARMv5TExP-specific behavior is
enabled, and bit 0 of the loaded data controls the entry
into the Thumb state when the PC (r15) is the destination
register. When set to 1, this ARMv5TExP behavior is
disabled.

At reset, this bit is cleared.

RR Round-Robin Replacement 14
This bit controls the cache replacement algorithm. When
set to 1, round-robin replacement is used. When cleared
to 0, a pseudo-random replacement algorithm is used.

At reset, this bit is cleared.

AVS Alternate Vectors Select 13
This bit controls the base address used for the exception
vectors. When cleared to 0, the base address for the
exception vectors is 0x00000000. When set to 1, the
base address is 0xFFFF0000.

Note: This bit is initialized to either 1 or 0 during system reset,
depending on the value of the input pin, VINITHI. This
allows you to define the exception vector location during
reset to suit the boot mechanism of the application. You
can then reprogram this bit as required following system
reset.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-13
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

IE I-Cache Enable 12
This bits controls I-cache behavior.

To use the instruction cache, both the protection unit
enable bit (bit 0) and the I-cache enable bit must be set
to 1. You can do this with a single write to register 1.

At reset, this bit is cleared.

EDN Endian 7
This bit selects the endian configuration of the
ARM946E-S. When this bit is set to 1, the big-endian
configuration is selected. When cleared to 0, the
little-endian configuration is selected.

At reset, this bit is cleared.

RWO Reserved - Write Ones [6:3]
This field is reserved. Write ones to these bits.

DE D-Cache Enable 2
This bit controls the behavior of the D-cache.

To use the data cache, both the protection unit enable bit
(bit 0) and the D-cache enable bit must be set to 1. This
can be done with a single write to register 1.

At reset, this bit is cleared.

PE Protection Unit Enable 0
This bit controls the operation of the ARM946E-S
Protection Unit.

At reset, this bit is cleared, which disables the Protection
Unit. It also disables the instruction cache, data cache,
and the write buffer.

At least one protection region must be programmed
before the Protection Unit is enabled. See Section 3.3.9,
“Protection Region/Base Size (PR/BS) Registers (6),” on
page 3-19 and Chapter 3, “Programmer’s Model.”

3.3.6 Cache Configuration Registers (2)

These registers contain the cacheable attributes for the eight memory
regions. Individual control is provided for the I and D caches. If the
opcode_2 field = 0, then the data cache bits are programmed. If the
opcode_2 field = 1, then the instruction cache bits are programmed. To
read and write these registers:

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-14 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

MRC p15, 0, rd, c2, c0, 0; read data cacheable bits
MRC p15, 0, rd, c2, c0, 1; read instruction cacheable bits
MCR p15, 0, rd, c2, c0, 0; write data cacheable bits
MCR p15, 0, rd, c2, c0, 1; write instruction cacheable bits

The format for the cacheable bits in the data and instruction areas is the
same. Figure 3.6 shows the register format.

Figure 3.6 Instruction/Data Cacheable Bits Register

C_n Cacheable bits for Memory Region 7:0 [7:0]
These bits allow you to individually enable or disable the
cacheable attribute for each memory region. Setting a bit
to 1 makes the corresponding memory region cacheable;
clearing the bit makes that memory region uncacheable.

3.3.7 Write Buffer Control Register (3)

This register contains the write buffer control (bufferable) attribute for the
eight memory regions.

Note: This register only applies to data accesses.

To read and write the write buffer control register:

MCR p15, 0, rd, c3, c0, 0; write data bufferable bits
MRC p15, 0, rd, c3, c0, 0; read data bufferable bits

Figure 3.7 shows the register format.

7 6 5 4 3 2 1 0

C_7 C_6 C_5 C_4 C_3 C_2 C_1 C_0

Bit
Corresponds to
Memory Region

C_7 7

C_6 6

C_5 5

C_4 4

C_3 3

C_2 2

C_1 1

C_0 0

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-15
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 3.7 Write Buffer Control Register

B_n Bufferable bits for Memory Area 7:0 [7:0]
These bits allow you to individually enable or disable the
bufferable attribute for each memory region. Setting a bit
to 1 makes the corresponding memory area bufferable;
clearing the bit makes that memory region not bufferable.

3.3.8 Access Permission Registers (5)

There are four access permission registers:

• Instruction Access Permission (Extended)

• Data Access Permission (Extended)

• Instruction Access Permission (Standard)

• Data Access Permission (Standard)

These registers contain the access permission bits for the instruction and
data protection regions. The opcode_2 field of the MCR/MRC instruction
determines whether to access the standard or extended instruction or
data access permission registers.

3.3.8.1 Extended Instruction/Data Access Permission Registers

To read and write the extended registers:

7 6 5 4 3 2 1 0

B_7 B_6 B_5 B_4 B_3 B_2 B_1 B_0

Bit

Corresponds to
Memory Data
Region

B_7 7

B_6 6

B_5 5

B_4 4

B_3 3

B_2 2

B_1 1

B_0 0

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-16 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

MRC p15, 0, rd, c5, c0, 2; read data access permission bits
MRC p15, 0, rd, c5, c0, 3; read instruction access permission bits
MCR p15, 0, rd, c5, c0, 2; write data access permission bits
MCR p15, 0, rd, c5, c0, 3; write instruction access permission bits

Figure 3.8 shows the extended instruction/data register format. The
same format applies to both the Instruction and Data Access Permission
areas.

Figure 3.8 Instruction/Data Access Permission (I/DAP) Register (Extended)

I/DAP7[3:0] Instruction/Data Access Permission 7 [31:28]
This field contains the access permission bits for area 7.
The bit encoding is shown below.

I/DAP6[3:0] Instruction/Data Access Permission 6 [27:24]
This field contains the access permission bits for area 6.
The bit encoding for these bits is the same as
I/DAP7[3:0].

I/DAP5[3:0] Instruction/Data Access Permission 5 [23:20]
This field contains the access permission bits for area 5.
The bit encoding for these bits is the same as
I/DAP7[3:0].

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

I/DAP7[3:0] I/DAP6[3:0] I/DAP5[3:0] I/DAP4[3:0] I/DAP3[3:0] I/DAP2[3:0] I/DAP1[3:0] I/DAP0[3:0]

I/DAP7[3:0]

Access Permission

Privileged User

0b0000 No access No access

0b0001 Read/write access No access

0b0010 Read/write access Read-only

0b0011 Read/write access Read/write access

0b0100 Unpredictable Unpredictable

0b0101 Read-only No access

0b0110 Read-only Read-only

0b0111 Unpredictable Unpredictable

0b1xxx Unpredictable Unpredictable

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-17
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

I/DAP4[3:0] Instruction/Data Access Permission 4 [19:16]
This field contains the access permission bits for area 4.
The bit encoding for these bits is the same as
I/DAP7[3:0].

I/DAP3[3:0] Instruction/Data Access Permission 3 [15:12]
This field contains the access permission bits for area 3.
The bit encoding for these bits is the same as AP7[3:0].

I/DAP2[3:0] Instruction/Data Access Permission 2 [11:8]
This field contains the access permission bits for area 2.
The bit encoding for these bits is the same as
I/DAP7[3:0].

I/DAP1[3:0] Instruction/Data Access Permission 1 [7:4]
This field contains the access permission bits for area 1.
The bit encoding for these bits is the same as
I/DAP7[3:0].

I/DAP0[3:0] Instruction/Data Access Permission 0 [3:0]
This field contains the access permission bits for area 0.
The bit encoding for these bits is the same as
I/DAP7[3:0].

3.3.8.2 Standard Instruction/Data Access Permission Registers

The following instructions are supported for backward compatibility with
existing ARM processors with memory protection, and they access the
standard registers:

MRC p15, 0, rd, c5, c0, 0; read data access permission bits
MRC p15, 0, rd, c5, c0, 1; read instruction access permission bits
MCR p15, 0, rd, c5, c0, 0; write data access permission bits
MCR p15, 0, rd, c5, c0, 1; write instruction access permission bits

Figure 3.9 shows the extended instruction/data register format. The
same format applies to both the Instruction and Data Access Permission
registers.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-18 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 3.9 Instruction/Data Access Permission (I/DAP) Register (Standard)

I/DAP7[1:0] Instruction/Data Access Permission 7 [15:14]
This field contains the access permission bits for area 7.
The bit encoding is shown below.

I/DAP6[1:0] Instruction/Data Access Permission 6 [13:12]
This field contains the access permission bits for area 6.
The bit encoding for these bits is the same as
I/DAP7[1:0].

I/DAP5[1:0] Instruction/Data Access Permission 5 [11:10]
This field contains the access permission bits for area 5.
The bit encoding for these bits is the same as
I/DAP7[1:0].

I/DAP4[1:0] Instruction/Data Access Permission 4 [9:8]
This field contains the access permission bits for area 4.
The bit encoding for these bits is the same as
I/DAP7[1:0].

I/DAP3[1:0] Instruction/Data Access Permission 3 [7:6]
This field contains the access permission bits for area 3.
The bit encoding for these bits is the same as
I/DAP7[1:0].

I/DAP2[1:0] Instruction/Data Access Permission 2 [5:4]
This field contains the access permission bits for area 2.
The bit encoding for these bits is the same as
I/DAP7[1:0].

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I/DAP7[1:0] I/DAP6[1:0] I/DAP5[1:0] I/DAP4[1:0] I/DAP3[1:0] I/DAP2[1:0] I/DAP1[1:0] I/DAP0[1:0]

I/DAP7[1:0]

Access Permission

Privileged User

0b00 No access No access

0b01 Read/write access No access

0b10 Read/write access Read-only

0b11 Read/write access Read/write access

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-19
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

I/DAP1[1:0] Instruction/Data Access Permission 1 [3:2]
This field contains the access permission bits for area 1.
The bit encoding for these bits is the same as
I/DAP7[1:0].

I/DAP0[1:0] Instruction/Data Access Permission 0 [1:0]
This field contains the access permission bits for area 0.
The bit encoding for these bits is the same as
I/DAP7[1:0].

3.3.8.3 Programming the Access Permission Registers

At reset, the value of the I/DAPn bits is undefined. However, because the
protection unit is disabled on reset, in effect all areas are set to privileged
mode with user read/write access. Therefore, you must program the
access permission registers before you enable the protection unit.

If the access permissions are initially programmed using the extended
access permissions and then reprogrammed using the standard access
permissions, the access permissions are applied as if I/DAPn[3:2] are
0b00.

3.3.9 Protection Region/Base Size (PR/BS) Registers (6)

There are eight Protection Region/Base Size registers. You can define
eight programmable regions using these registers. The values are
ignored when the protection unit is disabled, and on reset only the region
enable bit for each region is reset to 0. All other bits are undefined. You
must program at least one memory region before you enable the
protection unit.

The instructions that access the eight protection region/base size
registers are listed in Table 3.3.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-20 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 3.10 shows the PR/BS register format.

Figure 3.10 PR/BS Register

RB Region Base [31:12]
This field specifies the region base.

U Undefined [11:6]
These bits are undefined.

AS Area Size [5:1]
This field determines the area size. The bit encoding is
shown below.

Table 3.3 Accessing PR/BS Registers

ARM Instruction
PR/BS
Register

Memory
Region

MCR/MRC p15, 0, rd, c6, c7, 0 7 7

MCR/MRC p15, 0, rd, c6, c6, 0 6 6

MCR/MRC p15, 0, rd, c6, c5, 0 5 5

MCR/MRC p15, 0, rd, c6, c4, 0 4 4

MCR/MRC p15, 0, rd, c6, c3, 0 3 3

MCR/MRC p15, 0, rd, c6, c2, 0 2 2

MCR/MRC p15, 0, rd, c6, c1, 0 1 1

MCR/MRC p15, 0, rd, c6, c0, 0 0 0

31 12 11 6 5 1 0

RB Undefined AS RE

Bit Encoding1 Area Size

0b00000 to 01010 Reserved (UNP)

0b01011 4 Kbytes

0b01100 8 Kbytes

0b01101 16 Kbytes

0b01110 32 Kbytes

0b01111 64 Kbytes

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-21
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

RE Region Enable 0
When this bit is set, it enables the memory region
associated with this register. When cleared, it disables
the memory region.

You must align the region base to an area size boundary, where the area
size is defined in its respective protection region register. If this is not
done, the behavior is unpredictable.

3.3.9.1 Example Base Setting

An 8 Kbyte-size region aligned to an 8 Kbyte boundary at 0x0000.2000
(covering the address range 0x0000.2000 to 0x0000.3FFF) is
programmed as 0x0000.2019.

The following instruction allows the protection region registers to be read,
and it provides backward compatibility with other ARM processors that
use a memory protection unit.

0b10000 128 Kbytes

0b10001 256 Kbytes

0b10010 512 Kbytes

0b10011 1 Mbyte

0b10100 2 Mbytes

0b10101 4 Mbytes

0b10110 8 Mbytes

0b10111 16 Mbytes

0b11000 32 Mbytes

0b11001 64 Mbytes

0b11010 128 Mbytes

0b11011 256 Mbytes

0b11100 512 Mbytes

0b11101 1 Gbyte

0b11110 2 Gbytes

0b11111 4 Gbytes
1. Using any value less than 0b01011

causes unpredictable behavior.

Bit Encoding1 Area Size

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-22 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

MRC p15, 0, rd, c6, CRm, 1; returns protection region
register

Writes to the Protection Region/Base Size registers with opcode_2 set
to 1 are unpredictable.

3.3.10 Cache Operations Register (7)

You can perform the following cache operations by writing to the Cache
Operations register:

• Flush I-cache and D-cache

• Prefetch an I-cache line

• Clean and flush the D-cache

• Drain the write buffer

• Wait for interrupt

The ARM946E-S uses a subset of the ARM architecture v4 functions that
are defined in the ARM Architecture Reference Manual. Table 3.4
summarizes the ARM946E-S cache operations.

Table 3.4 Cache Operations

ARM Instruction Cache Operation
Written to
Register 7

MCR p15, 0, rd, c7, c5, 0 Flush I-cache Zero1

MCR p15, 0, rd, c7, c5, 1 Flush I-cache single entry Address

MCR p15, 0, rd, c7, c13, 1 Prefetch I-cache line Address

MCR p15, 0, rd, c7, c6, 0 Flush D-cache Zero1

MCR p15, 0, rd, c7, c6, 1 Flush D-cache single entry Address

MCR p15, 0, rd, c7, c10, 1 Clean D-cache entry Address

MCR p15, 0, rd, c7, c14, 1 Clean and flush D-cache entry Address

MCR p15, 0, rd, c7, c10, 2 Clean D-cache entry Index/Set

MCR p15, 0, rd, c7, c14, 2 Clean and flush D-cache entry Index/Set

1. The Rd value transferred to Register 7 should be 0.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-23
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 3.11 shows the format for operations that transfer index/set
information to the Cache Operations register.

Figure 3.11 Index and Set Format

SET Set [31:30]
This field specifies the cache set.

RWZ Reserved - Write Zero [29:N+1]
These bits are reserved. Write zeros to these bits.

IDX Index [N:5]
This field specifies the cache index.

The size of the index varies depending on the implemented cache size.
Table 3.5 shows how the index size changes for the cache sizes
supported by the ARM946E-S.

Table 3.5 assumes a 4-way set associative cache. As associativity
decreases the cache needs more address bits. For a 2-way cache, each
index address entry in the table requires one additional address bit. For
a direct-mapped cache, two additional bits are required.

31 30 29 N+1 N 5 4 0

SET RWZ IDX RWZ

Table 3.5 Index Fields for Supported Cache Sizes

Cache Size Index

4 Kbytes Addr[9:5]

8 Kbytes Addr[10:5]

16 Kbytes Addr[11:5]

32 Kbytes Addr[12:5]

64 Kbytes Addr[13:5]

128 Kbytes Addr[14:5]

256 Kbytes Addr[15:5]

512 Kbytes Addr[16:5]

1 Mbyte Addr[17:5]

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-24 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

For cache operations that write an address to Register 7 (see Table 3.4),
Figure 3.12 shows the register format.

Figure 3.12 Address Format

3.3.10.1 Cache Clean and Flush Operations

Cache clean and flush operations can occur during instruction and data
line fetches. In these circumstances, the line fetch completes before the
clean or flush operation is executed.

3.3.10.2 Noncache Operations

Writing to the Cache Operations register is also used for two noncache
operations:

• Drain Write Buffer

• Wait for Interrupt

Drain Write Buffer – This operation stalls instruction execution until the
write buffer is emptied. Stalling is useful in real-time applications where
the processor must be sure that a write to a peripheral has finished
before program execution continues. For example, if a peripheral in a
bufferable region is the source of an interrupt, then after the interrupt is
serviced, the request must be removed before interrupts are enabled
again. This requirement is ensured if there is a drain write buffer
operation between the store to the peripheral and the interrupt enable.

Writing to Register 7 invokes the drain write buffer operation. Use the
following ARM instruction:

MCR cp15, 0, rd, c7, c10, 4; drain write buffer

This write transfer stalls the processor core until all outstanding accesses
in the write buffer are completed. In other words, it stalls the processor
until all data in the buffer is written to external memory.

Wait for Interrupt – This operation allows the ARM946E-S to enter a
low-power standby mode. When you invoke the operation, the CLKEN

31 5 4 0

Cache Line Address RWZ

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-25
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

signal to the processor core is negated and the cache and tightly coupled
memories are placed in a low-power state until either an interrupt or a
debug request occurs. This Wait for Interrupt operation is invoked by
writing to Register 7 using the following ARM instruction:

MCR p15, 0, rd, c7, c0, 4; wait for interrupt

This encoding is preferred for new software. For compatibility with
existing software, ARM946E-S also supports the following ARM
instruction, which has the same effect:

MCR p15, 0, rd, c15, c8, 2; wait for interrupt

This instruction stalls the processor from the time that the instruction is
executed until either nFIQ, nIRQ, or EDBGRQ are asserted. If the
debugger sets the debug request bit in the EmbeddedICE-RT logic
control register, it causes the wait for interrupt condition to terminate.

In the case of nFIQ and nIRQ, the processor core wakes up regardless
of whether the interrupts are enabled or disabled (that is, independent of
the I and F bits in the processor CPSR). The debug related wake up only
occurs if DBGEN is HIGH, that is, only when debug is enabled.

If interrupts are enabled, the ARM9E-S core is guaranteed to take the
interrupt before executing the instruction after the wait for interrupt
operation. If a debug request is used to wake up the system, the
processor enters the debug state before executing any more instructions.

The write buffer continues to drain until empty while the wait for interrupt
operation is executing.

3.3.11 Cache Lockdown Registers (9)

The Cache Lockdown registers allow you to lock down regions of the
cache. There are separate registers for the instruction and data cache.

To read and write the registers:

MCR p15, 0, rd, c9, c0, 0; write data lockdown control
MRC p15, 0, rd, c9, c0, 0; read data lockdown control
MCR p15, 0, rd, c9, c0, 1; write instruction lockdown
control
MRC p15, 0, rd, c9, c0, 1; read instruction lockdown control

Figure 3.12 shows the register format.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-26 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 3.13 Cache Lockdown Register

LD Load 31
When this bit is set to 1, it indicates this is a lockdown
load operation.

UNP/WZ Unpredictable - Write Zero [30:2]
These bits are unpredictable, so write all zeros to them.

IDX Index Field [1:0]
This field specifies the cache set.

For a description of Lockdown, refer to Section 4.4, “Cache Lockdown.”

3.3.12 Tightly Coupled Memory Region Registers (9)

These registers allow you to modify the visible size of the instruction and
data tightly coupled memories.

You can either increase or decrease the size of the tightly coupled
memories from the physical sizes specified in Register 0. (See
Section 3.3.4, “Tightly Coupled Memory Size Register (0),” on page 3-9.)
Increasing the visible size of the tightly coupled memories above the
physical size allows aliasing within the tightly coupled memory space.
This feature is useful for debugging multitasking systems.

There are two memory region registers, one for each of the tightly
coupled memories:

MRC p15, 0, rd, c9, c1, 0; read data tightly coupled memory
MCR p15, 0, rd, c9, c1, 0; write data tightly coupled memory
MRC p15, 0, rd, c9, c1, 1; read instruction tightly coupled memory
MCR p15, 0, rd, c9, c1, 1; write instruction tightly coupled memory

Figure 3.12 shows the register format.

31 30 2 1 0

LD UNP/WZ IDX

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-27
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 3.14 Tightly Coupled Memory Region Register Format

RB Region Base Address [31:12]
This field contains the Region Base address.

UND Undefined [11:6]
These bits are undefined.

RS Region Size [5:1]
This field specifies the region size, which can range from
4 Kbytes (minimum) to 4 Gbytes (maximum). The bit
encodings are shown below.

31 12 11 6 5 1 0

RB UND RS RW
Z

Bit
Encoding

Tightly Coupled Memory
Region Size

0b00011 4 Kbytes

0b00100 8 Kbytes

0b00101 16 Kbytes

0b00110 32 Kbytes

0b00111 64 Kbytes

0b01000 128 Kbytes

0b01001 256 Kbytes

0b01010 512 Kbytes

0b01011 1Mbyte

0b01100 2 Mbytes

0b01101 4 Mbytes

0b01110 8 Mbytes

0b01111 16 Mbytes

0b10000 32 Mbytes

0b10001 64 Mbytes

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-28 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

RWZ Reserved - Write Zero 0
This bit is reserved. Write a zero to this bit.

For a given number of aliases for the physical memory size, use the
following function:

Area size = Physical size + N

where 2N is the required number of aliases.

You must align the region base to an area size boundary, where the area
size is defined in its respective protection region register. The behavior
is unpredictable if this is not done.

The instruction tightly coupled memory base address is fixed at 0x00000.
For the instruction tightly coupled memory, the region base returns the
value 0x00000 when read.

When writing to the instruction tightly coupled memory, you must set the
region base to 0x00000. Writes with the region base set to any other
value are unpredictable.

At reset, the region base for both the instruction and data Tightly
Coupled Memory Region registers is cleared to 0x00000.

At reset, the area size for the instruction and data Tightly Coupled
Memory Region registers takes the value defined in the Tightly Coupled
Memory Size register. (See Section 3.3.4, “Tightly Coupled Memory Size
Register (0),” on page 3-9.)

You must program the Data Tightly Coupled Memory Region registers
before you set the data RAM enable bit (bit 16) in Register 1. (See
Section 3.3.5, “Control Register (1),” on page 3-11.) If this is not done,

0b10010 128 Mbytes

0b10011 256 Mbytes

0b10100 512 Mbytes

0b10101 1 Gbyte

0b10110 2 Gbytes

0b10111 4 Gbytes

Bit
Encoding

Tightly Coupled Memory
Region Size

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-29
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

the data tightly coupled memory resides at the same location, which
causes unpredictable behavior.

Note: If the data tightly coupled memory is located at the same
address as the instruction tightly coupled memory, then the
instruction memory takes precedence for data accesses.

If the data tightly coupled memory is located at the same
address as the instruction tightly coupled memory, and the
instruction RAM is in load mode, data accesses are read
from the data RAM and written to the instruction RAM.

3.3.13 Trace Process Identifier Register (13)

This register allows you to identify the currently executing process in
multitasking environments using the real-time trace tools.

The contents of this register are output on the ETMPROCID pins of the
ARM946E-S.

The following ARM instructions are used for accessing the Process ID
register:

MRC p15, 0, rd, c13, c1, 1; read process ID register
MCR p15, 0, rd, c13, c1, 1; write process ID register

Figure 3.15 shows the register format.

Figure 3.15 Trace Process ID Register

3.3.13.1 Register 15, Test State Register

Register 15 gives you access to the test features included within the
ARM946E-S. Use these instructions to access the register:

MCR {cond} p15, 0, rd, c15, c0, 0; write test state register
MRC {cond} p15, 0, rd, c15, c0, 0; read test state register

Figure 3.15 shows the register format.

31 0

Trace Process Identifier

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-30 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 3.16 Test State Register

UNP Unpredictable [31:13]
When read, these bits return unpredictable data. Writing
to these bits can cause unpredictable behavior or
changes to device configuration.

DDS Disable Data Cache Streaming 12
When this bit is 1, it prevent the data cache from
streaming data to the ARM9E-S during a cache line fill.
When the bit is 0, data cache streaming is permitted.

DIS Disable Instruction Cache Streaming 11
When this bit is 1, it prevents the instruction cache from
streaming data to the ARM9E-S during a cache line fill.
When the bit is 0, instruction cache streaming is
permitted.

DDL Disable Data Cache Line Fill 10
When this bit is 1, it prevents the data cache from doing
a line fill on a cache miss. When the bit is 0, line fills are
permitted.

DIL Disable Instruction Cache Line Fill 9
When this bit is 1, it prevents the data cache from doing
a line fill on a cache miss. When the bit is 0, line fills are
permitted.

R Reserved [8:0]
These bits are reserved.

Reading the Test State register returns bits [12:0] in the least significant
bits. The 19 most significant bits are unpredictable. Writing the Test State
register updates only bits [12:9].

In debug mode, you must be able to execute code without causing line
fills to update the caches, primarily to load new code into memory. This
means that STRs, if they hit the cache, must update the memory and the
cache, and that for LDRs or instruction prefetches that miss, a line fill is
not performed. When set, bits [10:9] prevent the respective cache from
performing a line fill on a cache miss. The memory mapping, as seen by

31 13 12 11 10 9 8 0

UNP DDS DIS DDL DIL R

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-31
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

the ARM9E-S or by the programmer, is unchanged. This feature
improves the performance of single-stepping when in debug mode. There
is one side effect from this capability. For cached accesses, the BIU
returns aborts from the AHB. However, when line fills are disabled, the
access on the AHB is treated as uncacheable, so aborts may return that
otherwise would have been blocked.

When set, bits [12:11] prevent the respective cache from streaming data
to the ARM9E-S while the line fill is performed to the cache. The line fill
still occurs, but the prefetched instruction or load data is returned to the
processor at the end of a line fill.

3.3.14 Cache Debug Index Register (15)

The Cache Debug Index register allows access to any location within the
instruction or data cache for debugging purposes.

Table 3.6 lists cache debugging operations that use this register.

1. You must program the Cache Debug Index register before using any of the tag or cache read/write
operations.

Table 3.6 Cache Debug Operations

Instruction Operation Data

MCR p15, 3, rd, c15, c0, 0 Write CP15 cache debug index
register

Index/Set

MRC p15, 3, rd, c15, c0, 0 Read CP15 cache debug index
register

Index/Set

MCR p15, 3, rd, c15, c1, 0 Instruction tag write1 Data

MRC p15, 3, rd, c15, c1, 0 Instruction tag read1 Data

MCR p15, 3, rd, c15, c2, 0 Data tag write1 Data

MRC p15, 3, rd, c15, c2, 0 Data tag read1 Data

MCR p15, 3, rd, c15, c3, 0 Instruction cache write1 Data

MRC p15, 3, rd, c15, c3, 0 Instruction cache read1 Data

MCR p15, 3, rd, c15, c4, 0 Data cache write1 Data

MRC p15, 3, rd, c15, c4, 0 Data cache read1 Data

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-32 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

The Cache Debug Index register provides an index into the cache
memories and uses the format shown in Figure 3.17.

Figure 3.17 Cache Debug Index Register - Index/Set Format

SET Set [31:30]
This field specifies which one of the four cache sets to
access.

RWZ Reserved - Write Zero [29:N+1], [1,0]
These bits are reserved. Write zeros to these bits.

Index Index [N:5]
This field specifies which cache index to access during a
cache debug operation. The size of the index varies
depending on the implemented cache size. Table 3.7 on
page 3-33 shows how much the index address field size
differs for each cache size the ARM946E-S supports.
Note that the table is for a 4-way set associative cache
and the index value must be adjusted for 2-way and
direct-mapped caches.

Word Word Address [4:2]
This field specifies which cache word to access in a
cache debug operation.

Note: For tag operations, the word address field in the Cache
Debug Index register is ignored.

Figure 3.18 shows the data format for tag read/write operations.

Figure 3.18 Data Format for Tag Read/Write Operations

Tag Addr Tag Address [31:N+1]
This field contains the tag address to be read from or
written into the cache tag RAM. The size of the tag
address varies according to the implemented cache size
(see Table 3.7).

31 30 29 N+1 N 5 4 2 1 0

SET RWZ Index Word RWZ

31 N+1 N 5 4 3 2 1 0

Tag Addr Idx Addr V Dirty S

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP15 Registers 3-33
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Idx Addr Index Address [N:5]
This field contains the Index address to be read from or
written to the cache tag RAM. The size of the index
varies according to the implemented cache size (see
Table 3.7).

V Valid Bit 4
This bit is the validity bit associated with a given tag
location. When set, it indicates the cache data associated
with this tag location holds valid data.

Dirty Dirty Bits [3:2]
When set, these bits indicate the data associated with a
given tag location differs from external memory.

S Set [1:0]
This field indicates which data or instruction cache set to
access.

Table 3.7 shows how the index and tag address field sizes differ for each
cache size the ARM946E-S supports.

The values shown in Table 3.7 are for a 4-way set associative cache. The
index must be increased by 1 and the tag decreased by 1 for a 2-way
set associative cache. For a direct-mapped cache, the tag and index
must be adjusted by 2.

Table 3.7 Tag and Index Fields for Supported Cache Sizes

Cache Size Tag Index

4 Kbytes Addr[31:10] Addr[9:5]

8 Kbytes Addr[31:11] Addr[10:5]

16 Kbytes Addr[31:12] Addr[11:5]

32 Kbytes Addr[31:13] Addr[12:5]

64 Kbytes Addr[31:14] Addr[13:5]

128 Kbytes Addr[31:15] Addr[14:5]

256 Kbytes Addr[31:16] Addr[15:5]

512 Kbytes Addr[31:17] Addr[16:5]

1 Mbyte Addr[31:18] Addr[17:5]

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-34 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

3.4 CP14 Registers

CP14 contains four registers, which are listed in Table 3.8.

3.4.1 Debug Comms Channel Status Register (C0)

The Debug Comms Channel Status register is read-only. It controls
synchronized handshaking between the processor and the debugger.
Figure 3.19 shows the register format.

Figure 3.19 Debug Comms Channel Status Register

Each register bit functions as follows:

VER Version Number [31:28]
This field contains a fixed pattern that denotes the
EmbeddedICE-RT version number (in this case 0b0011).

RWZ Reserved - Write Zero [27:2]
These bits are reserved. Write zeros to these bits.

W Write Register 1
This bit indicates whether or not the Comms Data Write
register is available to the processor. If the bit is 0, the
register is available and the processor can write new data
to it. If the bit is 1, the register is not free and the
processor must poll until W = 0. From the point of view
of the debugger, when W = 1, new data has been written
that can then be scanned out.

Table 3.8 Coprocessor 14 Register Map

Register Name Register Number Notes

Comms channel status C0 Read-only

Comms channel data read C1 For reads

Comms channel data write C1 For writes

Debug status C2 Read/write

31 28 27 2 1 0

VER RWZ W R

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CP14 Registers 3-35
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

R Read Register 0
This bit indicates whether or not there is new data in the
Comms Data Read register. If this bit is 1, from the
processor’s viewpoint there is new data that can be read
using an MRC instruction. If this bit is 0, from the
debugger’s viewpoint the Comms Data Read register is
free, and new data can be placed there through the scan
chain. When this bit is 1, data previously placed there
through the scan chain has not been collected by the
processor yet, so the debugger must wait.

From the viewpoint of the debugger, the registers are accessed using the
scan chain. From the viewpoint of the processor, the registers are
accessed using the coprocessor register transfer instructions. It is
recommended that you use the following instructions:

1. This instruction returns the Debug Comms Control register into Rd:
MRC p14, 0, Rd, c0, c0

2. This instruction writes the value in Rn to the Comms Data Write
register:
MCR p14, 0, Rn, c1, c0

3. This instruction returns the Debug Data Read register into Rd:
MRC p14, 0, Rd, c1, c0

Access this data using SWI instructions when in the Thumb state,
because the Thumb instruction set does not contain coprocessor
instructions.

3.4.2 Debug Status Register (C2)

A debug monitor can use the CP14 Debug Status register when the
ARM9E-S is in real-time debug mode.

The CP14 Debug Status register is essentially a one-bit read/write
register with the format shown in Figure 3.20.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

3-36 Programmer’s Model
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 3.20 Coprocessor 14 Debug Status Register

RWZ Reserved - Write Zero [31:1]
These bits are reserved. Write zeros to these bits.

DbgAbt Debug Abort 0
This bit indicates whether the processor took a Prefetch
or Data Abort in the past because of a breakpoint or
watchpoint.

This bit is set to 1 if the ARM9E-S core takes a Prefetch
Abort as a result of a breakpoint or watchpoint. If on a
particular instruction or data fetch, both the debug abort
and external abort signals are asserted, the external
abort takes priority and the DbgAbt bit is not set. You can
read/write the DbgAbt bit using MRC/MCR instructions.

A typical use of this bit is by a real-time debug-aware abort handler. This
handler examines the DbgAbt bit to determine whether the abort has
been externally or internally generated. If the DbgAbt bit is set, the abort
handler initiates communication with the debugger over the comms
channel.

31 1 0

RWZ DbgAbt

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual 4-1
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 4
Caches

This chapter describes the features and behavior of each of these blocks.
It contains the following sections:

• Section 4.1, “Cache Architecture”

• Section 4.2, “I-Cache”

• Section 4.3, “D-Cache”

• Section 4.4, “Cache Lockdown”

4.1 Cache Architecture

The ARM946E-S uses an Instruction Cache (I-cache) and a Data Cache
(D-cache) to reduce the effective memory access time. You can tailor the
cache size to suit your individual application, and you can set the I-cache
and D-cache sizes independently. The ARM946E-S supports the
following cache sizes:

• 0 Kbytes

• 4 Kbytes

• 8 Kbytes

• 16 Kbytes

• 32 Kbytes

• 64 Kbytes

• 128 Kbytes

• 256 Kbytes

• 512 Kbytes

• 1 Mbyte

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

4-2 Caches
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

The I-cache and D-cache are formed from synchronous SRAM, and have
similar architectures. Figure 4.1 shows an example 8 Kbyte cache.

Figure 4.1 Example 8 Kbyte Cache

RDATA

Addr
[31:0]

WDATA

32

0

1

2

63

ROW

Addr
[10:5]

Addr
[31:11]

Set 0

Set 1

Set 2

Set 3

Word
7

Word
6

Word
5

Word
4

Word
3

Word
2

Word
1

Word
0

Address
Tag
Set0

Addr
[4:2]

RAM

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Cache Architecture 4-3
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

The I-cache and D-cache can be direct mapped, or they can be 2-way
or 4-way set associative with a cache line length of 8 words (32 bytes).
Each cache supports single-cycle read access.

Each cache set includes a tag RAM for storing the cache line address
and a data RAM for storing the instructions or data.

During a cache access, all tag RAMs are accessed, and the tag address
is compared with the access address. If a match (or cache hit) occurs,
the data from that set is selected for return to the ARM9E-S core. If none
of the Tags match (a cache miss), then external memory must be
accessed, unless the write buffer is enabled and this access is a buffered
write.

If a read access from a cacheable memory region misses, new data is
loaded into one of the sets. This method is an allocate on read miss
replacement policy. Selection of the set is performed by a set counter
that can be clocked in a pseudo-random manner, or in a predictable
manner based on the replacement algorithm selected.

Critical or frequently accessed instructions or data can be locked into the
cache by restricting the range of the replacement counter. You cannot
replace locked lines. They remain in the cache until they are unlocked or
flushed. The cache cannot be locked if it is direct mapped.

The cache access address from the ARM9E-S core has four parts:

• Byte Address (Addr[1:0])

• Word Address (Addr[4:2])

• Index Address (Addr[N:5])

• Tag Address (Addr[31:N+1])

For example, for a 4 Kbyte, 4-way set associative cache, the cache
access address is as shown in Figure 4.2.

Figure 4.2 Access Address for a 4 Kbyte Cache

31 10 9 5 4 2 1 0

Tag Address Index Address Word Byte

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

4-4 Caches
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

The size of the index and address Tags vary depending on the cache
size. Table 4.1 shows how the index and tag sizes change for the cache
sizes supported by the ARM946E-S.

Table 4.1 is for a 4-way set associative cache. A direct-mapped cache
requires two more address bits for the index and two less for the tag. A
2-way set associative cache uses one more bit for the index and one less
for the tag.

Each entry in the tag RAM contains an Index and tag address (or cache
line address) plus three additional bits that indicate the status or validity
of the cache data associated with a given tag address. The three bits
are:

• Valid Bit (bit 4)

The valid bit is set when a cache line is written with valid data. Only
a valid line can return a hit during a cache lookup. Upon reset, all
valid bits are cleared.

• Dirty Bits (bits [3:2])

The two dirty bits are associated with write operations in the
D-cache. They indicate whether or not the data in a cache line differs
from the data in external memory.

Table 4.1 Tag and Index Fields for Supported Cache Sizes

Cache Size Tag Index

4 Kbytes Addr[31:10] Addr[9:5]

8 Kbytes Addr[31:11] Addr[10:5]

16 Kbytes Addr[31:12] Addr[11:5]

32 Kbytes Addr[31:13] Addr[12:5]

64 Kbytes Addr[31:14] Addr[13:5]

128 Kbytes Addr[31:15] Addr[14:5]

256 Kbytes Addr[31:16] Addr[15:5]

512 Kbytes Addr[31:17] Addr[16:5]

1 Mbyte Addr[31:18] Addr[17:5]

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

I-Cache 4-5
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Note: Data can be marked as dirty only if it resides in a write back
protection region.

4.2 I-Cache

The ARM946E-S has a direct-mapped, 2-way, or 4-way set-associative
I-cache. You can choose the size of the I-cache from any of the
supported cache sizes. The I-cache uses the physical address generated
by the processor core. It uses a policy of allocate on read-miss, and is
always reloaded one cache line (eight words) at a time, through the
external interface.

4.2.1 Enabling and Disabling the I-Cache

To enable the I-cache, set bit 12 of the CP15 Control register. The cache
is only enabled if the protection unit is already enabled, or if they are
enabled simultaneously. When the I-cache is enabled, a cacheable read-
miss places lines in the I-cache.

You can enable the I-cache and protection unit simultaneously with a
single write to the CP15 control register, although you must program at
least one protection region before you enable the protection unit.

You can lock critical or frequently accessed instructions into the I-cache.

4.2.2 I-Cache Operation

When enabled, the I-cache operation is also controlled by the Cacheable
instruction (Ci) bit, which is stored in the Protection unit. This bit
selectively enables or disables caching for different memory regions. The
Ci bit affects I-cache operation as follows:

Successful Cache Read – Data is returned to the core only if the Ci bit
is 1.

Unsuccessful Cache Read – If the Ci bit is 1, a line fetch of eight
words is performed. The line fetch starts with the requested address
aligned to an eight-word boundary (that is, the line fetch starts with
word 0). If the Ci bit is 0, a single-word external access is performed to
fetch the requested instruction. The cache is not updated.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

4-6 Caches
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Clearing bit 12 of the CP15 Control register disables the I-cache. This
action prevents all I-cache look ups and line fills, and forces all instruction
fetches to be performed as single external accesses.

4.2.3 I-Cache Validity

The ARM946E-S does not support external memory snooping.
Therefore, if you write self-modifying code, the instructions in the I-cache
can become incoherent with external memory. Similarly, if you reprogram
the protection regions, code might exist in the cache that should be in a
noncacheable region. In either of these cases, you must flush the
I-cache.

4.2.4 I-Cache Flush

You can flush the entire I-cache by software in one operation, or you can
flush individual cache lines by writing to the CP15 Cache Operations
register (register 7). The I-cache is automatically flushed during reset.
The I-cache never has to be cleaned because its only source of data is
from external memory. (The ARM9E-S processor only performs reads
from the I-cache, except during debug operations.)

Flushing the Entire Cache – As shown in Table 3.4 on page 3-22, you
can flush the entire I-cache using an MCR instruction. In this case, the
contents of the ARM register transferred to CP15 must be 0. You can use
the following code to do this:

MOV r0, #0 ; Clear r0
MCR p15, r0, c7, c5, 0; Flush entire instruction cache

Note: The use of r0 is arbitrary.

Flushing the entire cache also flushes any locked-down code. If you want
to preserve locked-down code, you must flush cache lines individually
and avoid the locked-down lines.

Flushing a Single Cache Line – You can flush single cache lines. To
do this, you must specify in Rd the address to be flushed from the cache.
You can use the following code to do this:

LDR r0, = FlushAddress; Load r0 with address
FlushAddress

MCR p15, r0, c7, c5, 1; Flush single cache line

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

D-Cache 4-7
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

4.3 D-Cache

The ARM946E-S has a direct mapped, 2-way, or 4-way set-associative
D-cache. You can choose the size of the D-cache from any of the
supported cache sizes. The D-cache uses the physical address
generated by the processor core. It uses an allocate on read-miss policy,
and is always reloaded one cache line (eight words) at a time, through
the external memory interface.

The Cacheable data (Cd) and Bufferable data (Bd) bits, which reside in
the Protection Unit, control the behavior of the D-cache. For this reason,
the Protection Unit must be enabled when the D-cache is enabled.

4.3.1 Enabling and Disabling the D-Cache

You can enable the D-cache by setting bit 2 of the CP15 control register.
The cache is only enabled if the Protection Unit is already enabled, or is
enabled simultaneously.

You can enable the D-cache and Protection Unit simultaneously with a
single write to the CP15 control register, although you must program at
least one protection region before you enable the protection unit.

To disable the D-cache, clear bit 2 of the CP15 control register.

The D-cache is automatically disabled and flushed on reset.

When the D-cache is disabled, cache searches are prevented. This
marks all data accesses as noncacheable, forcing the ARM946E-S to
perform external accesses. The write buffer control is still decoded from
the Bd and Cd bits. The Cd bit is forced to 0 (noncacheable).

4.3.2 D-Cache Operation

When the D-cache is enabled, it is searched when the processor
performs a load or store.

The D-cache supports both write back (WB) and write through (WT)
modes. For data stores that hit in the D-cache in WB mode, the cache
line is updated and the dirty bit is set for the associated cache half line.
Setting the dirty bit indicates that the cache version of the data differs
from external memory. In WT mode, a store that hits in the D-cache

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

4-8 Caches
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

causes the cache line to be updated. But the cache line is not marked
as dirty, because the data store is also written to external memory
(through the write buffer). This action keeps external memory consistent
with the cache. In both WB and WT modes, a store that misses in the
cache is sent to the write buffer. When a line fetch causes a cache line
to be evicted from the D-cache, the dirty bit for each half of the line is
read, and, if the half line contains valid and dirty data, it is written back
to the write buffer before the line fill replaces it.

4.3.2.1 Cd Bit - Cache Loads and Stores

The Cd bit determines whether data being read must be placed in the
D-cache and used for subsequent reads. Typically, main memory is
marked as cacheable to reduce memory access time and therefore
increase system performance. It is usual to mark input/output space as
noncacheable. For example, if a processor is polling a memory-mapped
register in input/output space, it is important that the processor is forced
to read data direct from the peripheral, and not a copy of initial data held
in the D-cache.

If the cache hits on a load, data is returned to the cache if the Cd bit
is 1. If the cache read misses, the Cd bit is examined. Table 4.2 shows
the function of the Cd bit.

Stores that hit in the cache update the cache line if the Cd bit is 1. Stores
that miss the cache use the Cd and Bd bits to determine whether the
write is buffered. A write miss is not loaded into the cache as a result of
that miss.

Table 4.2 Cd Bit Function

Cd Bit Value Function

1 Cacheable data area and protection unit enabled. A line fill of
eight words is performed, and the data is written into a
randomly chosen segment of the D-cache.

0 A single or multiple external access is performed and the
cache is not updated.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

D-Cache 4-9
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

4.3.2.2 Cd and Bd Bits - Cache Stores

The Bd and Cd bits affect writes that both hit and miss in the D-cache.
If the Bd and Cd bits are both 1, the area of memory is marked as write
back, and stores that hit in the D-cache only update the cache, not
external memory. If the Bd bit is 0 and the Cd bit is 1, the area of
memory is marked as write through, and stores that hit in the D-cache
update both the cache and external memory.

4.3.2.3 Load and Store Multiples

Load and store multiples are divided at 4 Kbyte boundaries (the minimum
protection region size), allowing a protection check to be performed in
case the Load Multiple (LDM) or Store Multiple (STM) crosses into a
region with different protection properties.

4.3.3 D-Cache Validity

The ARM946E-S does not support memory translation, so you can
always consider the data in the D-cache as valid within the context of the
ARM946E-S. However, if you use external memory translation and the
mappings are changed, the D-cache is no longer consistent with external
memory, and you must flush it.

The ARM946E-S does not support external memory snooping. Any
shared data memory space, therefore, must not be cacheable.
Additionally, if you reprogram the data protection regions, data already in
the cache might now be in a noncacheable region, and you must flush it.

4.3.4 D-Cache Clean and Flush

The D-cache has flexible cleaning and flushing utilities that allow the
following operations:

• You can invalidate the whole D-cache (flush D-cache) in one
operation without writing back dirty data.

• You can invalidate individual lines without writing back any dirty data
(flush D-cache single entry).

• You can perform cleaning on a line-by-line basis. The data is only
written back through the write buffer when a dirty line is encountered,
and the cleaned line remains in the cache (clean D-cache single

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

4-10 Caches
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

entry). You can clean cache lines using either their index within the
D-cache or their address within memory.

• You can clean and flush individual lines in one operation (clean and
flush D-cache entry). You can clean and flush individual lines using
either their index within the D-cache or their address within memory.

You perform the cleaning and flushing operations using CP15 register 7,
in a similar way to the I-cache.

The format of Rd transferred to CP15 for all register 7 operations is
shown in Figure 4.3.

Figure 4.3 Register 7, Rd Format

The value of N is dependent on the cache size, as shown in Table 4.3.

The value of N is derived from the following equation:

31 30 29 N+1 N 5 4 0

Set RWZ Index RWZ

Table 4.3 Calculating Index Addresses

Cache Size Value of N

4 Kbytes 9

8 Kbytes 10

16 Kbytes 11

32 Kbytes 12

64 Kbytes 13

128 Kbytes 14

256 Kbytes 15

512 Kbytes 16

1 Mbyte 17

N 2log cache size
number of sets line length in bytes×

 4+=

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Cache Lockdown 4-11
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Where the number of sets multiplied by the line length in bytes is 128 for
a 4-way associative cache. This would be 64 for a 2-way associative
cache and 32 for a direct-mapped cache. The table above is correct for
a 4-way associative cache. A direct-mapped or 2-way cache would have
larger values for N.

It is usual to clean the cache before flushing it, so that external memory
is updated with any dirty data. The following code shows how you can
clean and flush the entire cache (assuming a 4 Kbyte D-cache).

MOV r1, #0 ; Initialize set counter
outer_loop

MOV r0, #0 ; Initialize line counter
inner_loop

ORR r2, r1, r0 ; Generate set and line address
MCR p15, 0, r2, c7, c14, 2 ; Clean and flush the line
ADD r0, r0, #0x20 ; Increment to next line
CMP r0, #0x400 ; Complete all entries in one

set?
BNE inner_loop ; If not branch back to inner_loop
ADD r1, r1, #0x40000000 ; Increment set counter
CMP r1, #0x0 ; Complete all sets
BNE outer_loop ; If not branch back to outer_loop

4.4 Cache Lockdown

To provide predictable code behavior in embedded systems, a
mechanism is provided for locking code into the I-cache and D-cache.
For example, you can use this feature to hold high-priority interrupt
routines where there is a hard real-time constraint, or to hold the
coefficients of a DSP filter routine in order to reduce external bus traffic.

You can lockdown a region of the I-cache or D-cache by executing a
short software routine, taking note of these requirements:

• The program must be held in a noncacheable area of memory.

• The cache must be enabled and interrupts must be disabled.

• Software must ensure that the code or data to be locked down is not
already in the cache.

• If the caches have been used after the last reset, the software must
ensure that the cache in question is cleaned, if appropriate, and then
flushed.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

4-12 Caches
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

You can carry out lockdown in the D-cache using CP15 register 9.
I-cache lockdown uses both CP15 registers 7 and 9.

As described in Section 4.1, “Cache Architecture,” page 4-1, the
ARM946E-S I-cache and D-cache each consist of from one to four sets.
You can perform lockdown with a granularity of one set. The smallest
space that you can lockdown is one set (one quarter of cache size).
Lockdown starts at set zero, and can continue until only one set is left
unlocked. At least one set must always be unlocked, so lockdown is not
available for direct-mapped caches.

4.4.1 Locking Down the Caches

The procedures for locking down a set in the I-cache and D-cache are
slightly different. In both cases you must:

1. Put the cache into lockdown mode by programming register 9.

2. Force a line fill.

3. Lock the corresponding data in the cache.

4.4.1.1 D-Cache Lockdown

For the D-cache, the lockdown procedure is as follows:

1. Write to CP15 register 9, setting LD = 1 (LD is bit 31, the load bit)
and IDX[1:0] = 0 (IDX bits specify the cache set).

2. Initialize the pointer to the first of the words to be locked into the
cache.

3. Execute an LDR from that location. This forces a line fill from that
location, and the resulting eight words are captured in the cache.

4. Increment the pointer by 32 (number of bytes in a cache line).

5. Execute an LDR from that location. The resulting line fill is captured
in the cache.

6. Repeat steps 4 and 5 until all words are loaded in the cache or one
quarter of the cache has been loaded.

7. Write to CP15 register 9, setting LD = 0 and IDX[1:0] = 1.

If there is more data to lockdown, at the final step, the LD bit must remain
set and the process repeated. The LD bit must only be cleared when all

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Cache Lockdown 4-13
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

the lockdown data has been loaded. The IDX[1:0] bits must be set to the
next available set.

Note: The write to CP15 register 9 must not be executed until the
line fill has completed. This is achieved by aligning the LDR
to the last address of the line.

4.4.1.2 I-Cache Lockdown

For the I-cache, the lockdown procedure is as follows:

1. Write to CP15 register 9, setting LD = 1 (the load bit) and IDX[1:0]
= 0 (the cache set bits).

2. Initialize the pointer to the first of the words to be locked into the
cache.

3. Force a line fill from that location by writing to CP15 register 7
(I-cache preload).

4. Increment the pointer by 32 (number of bytes in a cache line).

5. Force a line fill from that location by writing to CP15 register 7. The
resulting line fill is captured in the I-cache.

6. Repeat steps 4 and 5 until all words are loaded in the cache or one
set of the cache has been loaded.

7. Write to CP15 register 9, setting LD = 0 and IDX[1:0] = 1.

If there are more instructions to lockdown, at the final step, the LD bit
must remain set and the process repeated. The LD bit must only be
cleared when all the lockdown instructions have been loaded. The
IDX[1:0] bits must be set to the next available set.

The only significant difference between the sequence of operations for
the D-cache and I-cache is that an MCR instruction must be used to force
the line fill in the I-cache, instead of an LDR. The rest of the sequence
is the same as for D-cache lockdown.

The MCR to perform the I-cache fetch is a CP15 register 7 operation:

MCR p15, 0, Rd, c7, c13, 1

4.4.1.3 Example I-Cache Lockdown Subroutine

A subroutine that you can use to lockdown code in the I-cache is:

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

4-14 Caches
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

; Subroutine lock_i_cache
; r1 contains the start address
; r2 contains the end address
; Assumes that r2 - r1 fits within one cache set
; The subroutine performs a lockdown of instructions in the
; instruction cache
; It first reads the current lock_down index and then locks
; down the number of sets required
; Note - This subroutine must be located in a noncacheable
; region of memory
; - Interrupts must be disabled
; - Subroutine must be called using the BL instruction
; - r1-r3 can be corrupted in line with ARM/Thumb
; Procedure Call Standards (ATPCS)
; - Returns final I-Cache lockdown index in r0 if successful
; - Returns 0xFFFFFFFF in r0 if an error occurred

lock_I_cache
BIC r1, r1, #0x7f ;Align address to cache line
MRC p15, 0, r3, c9, c0, 1 ;Get current I-Cache index
AND r3, r3, #0x3 ;Mask unwanted bits
CMP r3, #0x3 ;Check for available set
BEQ error ;If no sets available,

;generate an error
ORR r3, r3, #0x8000000 ;Set the lockdown bit
MCR p15, 0, r3, c9, c0, 1 ;Write lockdown register

lock_loop
MCR p15, 0, r1, c7, c13, 1 ;Force an instruction fetch

;from address r1
ADD r1, r1, #0x20 ;Increment address by a

;cache line length
CMP r2, r1 ;Reached our end address yet?
BLT lock_loop ;If not, repeat loop
ADD r3, r3, #0x1 ;Increment I-Cache index
BIC r0, r3, #0x8000000 ;Clear lockdown bit and

;Write index into r0
MCR p15, 0, r3, c9, c0, 1 ;Write lockdown register
MOV pc, lr ;Return from subroutine

error
MVN r0, #0 ;Move 0xFFFFFFFF into r0
MOV pc, lr ;Return from subroutine

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual 5-1
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 5
Protection Unit

This chapter describes the ARM946E-S Protection Unit. It contains the
following sections:

• Section 5.1, “About the Protection Unit”

• Section 5.2, “Enabling the Protection Unit”

• Section 5.3, “Memory Regions”

• Section 5.4, “Overlapping Regions”

5.1 About the Protection Unit

The protection unit allows you to partition memory and set individual
protection attributes for each protection region. You can divide the
address space into eight regions with different sizes for each region.

Figure 5.1 shows a simplified block diagram of the Protection Unit.

Figure 5.1 ARM946E-S Protection Unit

The Protection Unit is programmed using CP15 registers 1, 2, 3, 5, and 6
(see Section 3.3, “CP15 Registers,” page 3-2).

Address Comparators

Address from ARM9E-S

Hit Priority
Encoder

CP15 Attribute

Abort

Attributes

Registers

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

5-2 Protection Unit
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

5.2 Enabling the Protection Unit

Before the Protection Unit is enabled, you must program at least one
valid protection region. Otherwise, the ARM946E-S could enter a state
that requires using reset to recover.

To enable the Protection Unit, set bit 0 of CP15 Register 1, the Control
register.

When the Protection Unit is disabled, all instruction fetches are
noncacheable, and all data accesses are noncacheable and
nonbufferable.

5.3 Memory Regions

You can partition the address space into a maximum of eight regions.
Each region has the following specifications:

• Region base address

• Region size

• Cache and write buffer configuration

• Read and write access permissions

The ARM architecture uses constants known as inline literals to perform
address calculations. These constants are automatically generated by
the assembler and compiler and are stored inline with the instruction
code. To ensure correct operation, you must define an area of memory
from where code is to be executed that allows both data and instruction
accesses.

The base address and size properties are programmed using CP15
register 6. For the format and bit descriptions of this register, refer to
Section 3.3.9, “Protection Region/Base Size (PR/BS) Registers (6),”
page 3-19.

5.3.1 Region Base Address

The base address defines the start of the memory region. You must align
this to a region-sized boundary. For example, if a region size of 8 Kbytes

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Overlapping Regions 5-3
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

is programmed for a given region, the base address must be a multiples
of 8 Kbytes.

Note: If the region is not aligned correctly, it causes unpredictable
behavior.

5.3.2 Region Size

The region size is specified as a five-bit value, encoding a range of
values from 4 Kbytes to 4 Gbytes. For a detailed list of the bit encodings,
refer to page 3-20.

5.3.3 Partition Attributes

Each region has a number of attributes associated with it. These control
how a memory access is performed when the processor core issues an
address that falls within a given region. The attributes are:

• Cacheable

• Bufferable (for data regions only)

• Read/write permissions

To specify this information, program CP15 registers 2, 3, and 5 (see
Chapter 3, “Programmer’s Model”). If an access fails its protection check
(for example, if a User mode application attempts to access a Privileged
mode access only region), a memory abort occurs. The processor enters
the abort exception mode, branching to the Data Abort or Prefetch Abort
vector accordingly.

The cacheable and bufferable bits in CP15 registers 2 and 3 are used
together to select one of four cache and write buffer configurations.
These are described in Section 7.5, “Write Buffer,” page 7-10.

5.4 Overlapping Regions

You can program the Protection Unit with two or more overlapping
regions. When overlapping regions are programmed, a fixed priority
scheme is applied to determine the overlapping region attribute that is
applied to the memory access. Attributes for region 7 have the highest
priority, and those for region 0 have the lowest priority.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

5-4 Protection Unit
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

For example, if region 1 and 2 are programmed as follows:

When the processor performs a data load from address 0x3010 while in
User mode, the address falls within both Region 1 and 2 (see the shaded
area in Figure 5.2). Since there is a conflict, the attributes associated
with Region 2 apply. This situation causes a Data Abort to occur,
because in User mode only reads are allowed from Region 2.

Figure 5.2 Overlapping Memory Regions

5.5 Background Regions

Overlapping regions increase the flexibility of how the eight regions can
be mapped onto physical memory devices in the system. You can also
use the overlapping properties to specify a background region. For
example, you might have a number of physical memory areas sparsely
distributed across the 4 Gbyte address space. If a programming error

Region Programmed For:

2 - 4 Kbyte size, starting from 0x3000
- Access permission bits, Dap[3:0] = 0b0010
- Privileged mode has full access
- User mode has read only access

1 - 16 Kbyte size, starting from 0x0000
- Access permission bits, Dap[3:0] = 0001
- Privileged mode access only

Region 2

Region 1

0x0000

0x3000

0x4000

0x3010

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Background Regions 5-5
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

occurs therefore, it might be possible for the processor to issue an
address that does not fall into any defined region.

If the address issued by the processor falls outside any of the defined
regions, the ARM946E-S protection unit is hardwired to abort the access.
To override this behavior, program region 0 to be a 4 Gbyte background
region. In this way, if the address does not fall into any of the other seven
regions, the access is controlled by the attributes you have specified for
region 0.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

5-6 Protection Unit
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual 6-1
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 6
Tightly Coupled SRAM

This chapter describes the tightly coupled SRAM in the ARM946E-S. It
contains the following sections:

• Section 6.1, “ARM946E-S SRAM Requirements”

• Section 6.2, “Using CP15 Control Register”

For details of the ARM9E-S interface signals referenced in this chapter,
see the ARM9E-S Technical Reference Manual.

6.1 ARM946E-S SRAM Requirements

The ARM946E-S tightly coupled SRAM is built using compiled SRAM
blocks from an ASIC library. The instruction SRAM (I-SRAM) and data
SRAM (D-SRAM) can differ in size, and they can be any size the
Protection Unit supports, from 0 bytes to 1 Mbyte. However, to ease
implementation, the size must be an integer power of two.

ARM946E-S supports synchronous SRAM for the tightly coupled SRAM.
The memory must be capable of returning data to the ARM9E-S
processor core in a single cycle. This requirement applies to both the
I-SRAM and D-SRAM.

To initialize the I-SRAM and to access literal tables during execution, the
ARM9E-S processor core data interface requires I-SRAM access. To
provide this access, the ARM946E-S multiplexes the instruction and data
addresses before they enter the I-SRAM, and routes instruction data to
both the instruction and data interfaces of the core. See Figure 1.1 on
page 1-3 for details of this data and address multiplexing.

Figure 6.1 shows a typical read cycle (I-SRAM shown).

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

6-2 Tightly Coupled SRAM
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 6.1 SRAM Read Cycle

The I-SRAM is located at address 0x00000000 in the memory map.
Using this location simplifies the implementation of the design by
removing the need for complex address comparators on both the
instruction and data interfaces of the ARM9E-S core to generate the chip
select logic for the SRAM. Fixing the SRAM location at 0x0 allows an
address decode to control the chip selects for greater power efficiency.

6.2 Using CP15 Control Register

Except during reset, the CP15 control register controls the behavior of
the tightly coupled SRAM.

6.2.1 Enabling the I-SRAM

To enable the I-SRAM, set bit 18 of the CP15 Control register to 1. To
preserve the bits that are not being modified, you must use
read-modify-write when accessing this register. See Section 3.3.5,
“Control Register (1)” on page 3-11 for details of how to read and write
the CP15 control register.

After the I-SRAM is enabled, all ARM9E-S instruction fetches and data
accesses to the I-SRAM address space access the I-SRAM.

Enabling the I-SRAM greatly increases the performance of the
ARM946E-S, because most accesses to the I-SRAM occur without stall
cycles. Accessing the AHB, however, can cause several stall cycles for
each access.

CLK

InMREQ

IA[31:1]

INSTR[31:0]

SRAM
Access Time

INSTR (A)

Addr A

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Using CP15 Control Register 6-3
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Note: Make sure you initialize the I-SRAM before attempting to
enable or use it. Otherwise, behavior is unpredictable.

6.2.2 Disabling the I-SRAM

To disable the I-SRAM, clear bit 18 of the CP15 control register. See
Section 3.3.5, “Control Register (1),” page 3-11 for details of how to read
and write the CP15 control register.

After you disable the I-SRAM, all ARM9E-S instruction fetches access
the AHB.

Note: The contents of the SRAM are preserved when it is
disabled. If it is re-enabled, accesses to previously
initialized SRAM locations return the preserved data.

6.2.3 I-SRAM Load Mode

You must initialize the I-SRAM with the required code image before
executing from the I-SRAM.

To initialize the I-SRAM, write a 1 to it from the ARM9E-S processor core
data interface.

Using the I-SRAM Load Mode allows you to initialize the I-SRAM more
efficiently. With load mode, you can directly copy data into an I-SRAM
location from the corresponding address in the data cache or external
memory.

When the I-SRAM Load Mode bit of CP15 Register 1 is set to 1, it
inhibits reads from the I-SRAM. This action forces I-SRAM reads to
access either external main memory or the data cache. Writes to the I-
SRAM address range are not affected when instruction load mode is set.

The procedure for initializing the I-SRAM using the load mode is as
follows:

1. Enable the I-SRAM and instruction load mode.

2. Load ARM registers from main memory, data cache, or data RAM.

3. Store ARM registers into I-SRAM.

4. Increment address pointers and repeat load/store steps until the
code image is copied.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

6-4 Tightly Coupled SRAM
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

A suggested assembler code sequence for this procedure is shown
below:

MOV R0, #0 ; Initialize pointer
LDR R1, =ImageTop ; Define end of code image
MRC p15, 0, R2, c1, c0, 0 ; Read Control Register
ORR R2, R2, #&C0000
MCR p15, 0, R2, c1, c0, 0 ; Enable Instruction RAM and Load Mode CopyLoop
LDMIA R0, {R2 - R9} ; Load 8 registers from main memory
STMIA R0!, {R2 - R9} ; Store 8 regs into instruction SRAM
CMP R1, R0 ; Check if limit reached
BGT CopyLoop ; Repeat if more to do

The read (LDMIA) accesses external memory or the data cache, and the
write (STMIA) updates the tightly coupled I-SRAM.

Do not use SWP or SWPB to access I-SRAM addresses while in load
mode. Doing this produces unpredictable results.

6.2.4 Enabling and Disabling the D-SRAM

To enable the D-SRAM, set bit 16 of the CP15 Control register. See
Section 3.3, “CP15 Registers,” page 3-2 for details of how to read and
write this register. After the D-SRAM is enabled, all read and write
accesses to the D-SRAM address space access the D-SRAM.

To disable the D-SRAM, clear bit 16 of the CP15 control register. After
you disable the D-SRAM, all reads and writes to the D-SRAM address
space access the AHB.

Reads and writes to D-SRAM address space either use the D-SRAM or
access the AHB depending on whether D-SRAM is enabled or not.

For more information, see Section 3.3.12, “Tightly Coupled Memory
Region Registers (9),” page 3-26.

6.2.5 D-SRAM Load Mode

You must initialize the D-SRAM with the required data image before use.

To initialize the D-SRAM, write to it from the ARM9E-S processor core
data interface.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Using CP15 Control Register 6-5
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

The D-SRAM load mode allows you to initialize the D-SRAM more
efficiently. With load mode, you can copy into the D-SRAM directly from
the corresponding address in the data cache or external memory.

When the D-SRAM Load Mode bit of CP15 Register 1 is set to 1, it
inhibits reads from the D-SRAM. This action forces reads to access
either main memory or the data cache. The Load Mode bit does not
affect writes to the D-SRAM address range.

The procedure for initializing the D-SRAM using the load mode is as
follows:

1. Enable the D-SRAM and data load mode.

2. Load ARM registers from main memory or data cache.

3. Store ARM registers into D-SRAM.

4. Increment address pointers and repeat load/store steps until the data
image is copied.

A suggested assembler code sequence for this procedure is shown
below:

LDR R0, #ImageStart ; Initialized pointer
LDR R1, =ImageTop ; Define end of data space
MRC p15, 0, R2, c1, c0, 0 ; Read Control Register
ORR R2, R2, #&30000
MCR p15, 0, R2, c1, c0, 0 ; Enable Data RAM and Load Mode

CopyLoop
LDMIA R0, {R2 - R9} ; Load 8 registers from main memory
STMIA R0!, {R2 - R9} ; Store 8 regs into instruction SRAM
CMP R1, R0 ; Check if limit reached
BGT CopyLoop ; Repeat if more to do

The read (LDMIA) accesses external memory or the data cache, and the
write (STMIA) updates the tightly coupled D-SRAM.

Do not use SWP or SWPB to access D-SRAM addresses while in load
mode. Doing this produces unpredictable results.

SWP and SWPB operations to the D-SRAM while it is in load mode
produce unpredictable results. The read accesses external memory or
the data cache, and the write updates the D-SRAM.

Do not perform SWP or SWPB operations to locations in the I-SRAM
address space while the I-SRAM is in load mode.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

6-6 Tightly Coupled SRAM
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual 7-1
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 7
Bus Interface Unit and
Write Buffer

This chapter describes the ARM946E-S Bus Interface Unit (BIU) and
write buffer. It contains the following sections:

• Section 7.1, “About the BIU and Write Buffer”

• Section 7.2, “AHB Bus Master Interface”

• Section 7.3, “Noncached Thumb Instruction Fetches”

• Section 7.4, “AHB Clocking”

• Section 7.5, “Write Buffer”

7.1 About the BIU and Write Buffer

The ARM946E-S supports an Advanced Microprocessor Bus
Architecture (AMBA) Advanced High-performance Bus (AHB) interface.
The AHB is a new generation of AMBA interface that addresses the
requirements of high-performance synthesizable designs, including:

• Single clock edge operation (rising edge)

• Unidirectional (non 3-state) buses

• Burst transfers

• Split transactions

• Single-cycle bus master handover

See the AMBA Rev 2.0 AHB Specification for details about this bus
architecture.

The ARM946E-S BIU implements a fully compliant AHB bus master
interface and incorporates a write buffer to increase system performance.
The BIU links external memory with the ARM9E-S processor core, the
caches, and the tightly coupled SRAMs. External memory is accessed

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

7-2 Bus Interface Unit and Write Buffer
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

through the AHB interface for cache line fills and for initializing the tightly
coupled SRAMs. The AHB interface is also used to access code and
data that are not within the cacheable or tightly coupled memory address
regions.

When an AHB access occurs, the BIU and system controller handshake
to ensure that the ARM9E-S processor core is stalled until the access is
finished. If you are using the write buffer, you might be able to allow the
processor core to continue program execution. The BIU controls the write
buffer and related stall behavior.

7.2 AHB Bus Master Interface

The ARM946E-S implements a fully compliant AHB bus master interface
as defined in the AMBA Specification, Rev 2.0. See this document for a
detailed description of the AHB protocol.

7.2.1 About the AHB

The AHB architecture is based on separate cycles for address and data
rather than separate clock phases, as in the AMBA Advanced System
Bus (ASB). The address and control for an access are broadcast from
the rising edge of HCLK in the cycle before the data is expected to be
read or written. During this data cycle, the address and control for the
next transfer are driven out, providing a fully pipelined address
architecture.

When an access is in its data cycle, a slave can extend an access by
driving the HREADY signal LOW. This action stretches the current data
cycle, and the pipelined address and control for the next transfer also
stretches. With this system, all AHB masters and slaves sample
HREADY on the rising edge of HCLK to determine when an access is
complete and whether a new address can be sampled or driven out.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

AHB Bus Master Interface 7-3
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

7.2.2 ARM946E-S Transfer Descriptions

The ARM946E-S supports three of the four possible transfer types
defined in the AMBA Specification. The supported transfer types are:

Note: The ARM 946E-S does not support the Busy transfer type, where
HTRANS[1:0] = 01.

7.2.3 Burst Sizes

The ARM946E-S supports the burst types listed in Table 7.1.

Incrementing bursts have an address increment of four (that is, a word
increment).

7.2.4 Line Fetch Transfers

The ARM946E-S is optimized to run with both the I-cache and D-cache
enabled. If a memory request (either instruction or data) to a cacheable
area misses in the cache, the ARM946E-S does a line fetch.

A line fetch transfer is shown in Figure 7.1.

IDLE HTRANS[1:0] = 00

NONSEQ HTRANS[1:0] = 10

SEQ HTRANS[1:0] = 11

Table 7.1 Supported Burst Types

Burst Type
HBURST[2:0]
Encoding Use

SINGLE 000 Single writes (STR/STRH/STRB)
Uncached single reads
Uncached instruction fetches

INCR 001 Store multiple (STM)
Uncached burst reads (LDM)

INCR4 011 Dirty half-cache line write back

INCR8 101 Dirty cache line write back
Cache line fetches

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

7-4 Bus Interface Unit and Write Buffer
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 7.1 Line Fetch Transfer

A line fetch is a fixed length burst of eight words. The start address of a
line fetch is aligned to an eight-word boundary. The ARM946E-S asserts
the bus request HBUSREQ until the arbiter grants the AHB bus
(HGRANT asserted). The bus request is then negated. This method
allows optimum system performance as the arbiter can accurately predict
the end of the defined burst length.

7.2.5 Back-to-Back Line Fetches

The ARM946E-S supports streaming of data and instructions (core
execution is advanced during the line fetch). To allow for cache look ups
when crossing a cache line boundary, the ARM946E-S must insert IDLE
cycles onto the AHB bus. The effect of this is shown in Figure 7.2. It is
assumed in Figure 7.2 that HGRANT is asserted throughout, and that the
HCLK frequency is the same as CLK.

HBURST

HBUSREQ

HREADY

HGRANT

HADDR

HTRANS

CLK

NSEQ NSEQ NSEQ SEQ SEQ SEQ SEQ SEQ SEQ

A A A A+0x04 A+0x08 A+0x0C A+0x10 A+0x14 A+0x18 A+0x1C

SEQ

INCR8

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

AHB Bus Master Interface 7-5
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 7.2 Back-to-Back Line Fetches

7.2.6 Uncached Transfers

If a memory request is made to an uncacheable region or the
ARM946E-S cache is not enabled, the memory requests are serviced by
the AHB interface. Sequential instruction fetches are treated as
nonsequential reads.

Figure 7.3 shows uncached instruction fetches. Nonsequential uncached
data operations have similar bus timing.

Figure 7.3 Nonsequential Uncached Accesses

7.2.7 Burst Accesses

The AHB handles uncached burst operations (STM/LDM) as
incrementing bursts of undefined length on the AHB.

SEQ SEQ IDLE IDLE IDLE NSEQ SEQ SEQ SEQ

A+0x18 A+0x1C A+0x1C A+0x1C A+0x1C B B+0x4 B+0x8 B+0xC

INCR8 INCR8HBURST

HBUSREQ

HREADY

HADDR

HTRANS

CLK

NSEQ NSEQ IDLE IDLE NSEQ NSEQ NSEQ IDLE

A A A A A B B B B

SINGLE SINGLEHBURST

HBUSREQ

HREADY

HADDR

HTRANS

CLK

NSEQ

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

7-6 Bus Interface Unit and Write Buffer
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 7.4 shows a data burst followed by an uncached instruction fetch.

Figure 7.4 Data Burst Followed by Instruction Fetch

7.2.8 Bursts Crossing 1 Kbyte Boundary

The AHB specification requires that bursts must not continue across a
1 Kbyte boundary. Line Fetches and cache line write backs cannot cross
a 1 Kbyte boundary because the start address is aligned to either a four-
or eight-word boundary, and the burst length is fixed.

Uncached data bursts can cross a 1 Kbyte boundary (see example in
Figure 7.5). The burst is restarted by inserting a nonsequential transfer
as the boundary is crossed.

Figure 7.5 Crossing a 1 Kbyte Boundary

7.3 Noncached Thumb Instruction Fetches

The AHB interface performs Thumb instruction fetches as 32-bit
accesses. To minimize bus loading, AHB transfers are only performed for
nonsequential addresses and for sequential addresses that cross a word
boundary. The word returned from main memory is latched, so both
halfwords are available for the processor core.

NSEQ SEQ SEQ IDLE NSEQ IDLE

A A + 4 A + 8 A + C A B BHADDR

HTRANS

CLK

SEQ

NSEQ SEQ SEQ NSEQ SEQ IDLE

0x3F0HADDR

HTRANS

CLK

SEQ

0x3F4 0x3F8 0x3FC 0x400 0x404 0x404

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

AHB Clocking 7-7
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

7.4 AHB Clocking

The ARM946E-S design uses a single rising-edge clock (CLK) to time all
internal activity. Some systems in which the ARM946E-S is embedded
might need to run the AHB at a lower rate. To support this requirement,
the ARM946E-S requires a clock enable (HCLKEN) to time AHB
transfers.

The HCLKEN input is driven HIGH coincident with a rising edge of the
ARM946E-S CLK. This action indicates that this particular rising-edge is
also an HCLK rising-edge. HCLK must be synchronous with the
ARM946E-S CLK.

When the ARM9E-S processor is running from tightly coupled SRAM or
performing writes using the write buffer, the ARM946E-S HCLKEN and
HREADY inputs are not used to stall the ARM9E-S processor. The
processor only stalls when there are SRAM stall cycles or if the write
buffer overflows. This means that the ARM9E-S is executing instructions
at the faster CLK rate and is effectively decoupled from the HCLK
domain.

However, when an AHB read access or unbuffered write occurs, the core
does stall until the AHB transfer is completed. While the lower rate HCLK
clocks the AHB system, HCLKEN is examined to determine when to
drive out the AHB address and control that start an AHB transfer.
HCLKEN then must detect the next rising edge of HCLK, so the BIU
knows when the access is complete.

If the slave being accessed at the HCLK rate has a multicycle response,
the HREADY input to the ARM946E-S is driven LOW until the data is
ready to return. The BIU must do a logical AND on the HREADY
response with HCLKEN to detect when the AHB transfer is completed.
When the transfer is completed, SYSCLKEN is reasserted and enables
the processor.

Note: When an AHB access is required, the processor core is
stalled until the next HCLKEN pulse is received. The
processor is stalled twice, once before it starts the access
and while waiting for the access to finish. The stall before
the start of the access is a synchronization penalty, and the
worst case can be expressed in CLK cycles as the
HCLK-to-CLK ratio minus 1.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

7-8 Bus Interface Unit and Write Buffer
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

7.4.1 CLK-to-HCLK Skew

The ARM946E-S drives out the AHB address on the rising edge of CLK
when the HCLKEN input is TRUE. The AHB outputs therefore have
output hold and delay values relative to CLK. However, these outputs are
used in the AHB system where transfers are timed using HCLK. Similarly,
inputs to the ARM946E-S are timed relative to HCLK but are sampled
within the ARM946E-S with CLK. This leads to hold-time issues, from
CLK to HCLK on outputs, and from HCLK to CLK on inputs. To minimize
this effect, you must minimize the skew between HCLK and CLK.

Figure 7.6 shows the AHB clock relationships.

Figure 7.6 AHB Clock Relationships

7.4.1.1 Clock Tree Insertion at Top Level

To ensure the clock is evenly distributed to all registers in the design, the
ARM946E-S requires insertion of a clock tree. The registers that drive
AHB outputs and sample AHB inputs are timed off CLK at the bottom of
the inserted clock tree and subject to the clock tree insertion delay. To
maximize performance, when the ARM946E-S is embedded in an AHB
system, the HCLK clock generation logic must be constrained so it
matches the insertion delay of the ARM946E-S clock tree. You can
achieve this using a clock tree insertion tool provided you insert the clock
tree in both the ARM946E-S and the embedded system at the same time
(top level insertion).

Figure 7.7 shows an example of an AHB slave connected to the
ARM946E-S.

CLK

HCLKEN

HCLK

AHB Outputs
from

ARM946E-S

AHB Inputs to
ARM946E-S

Skew between
CLK and HCLK

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

AHB Clocking 7-9
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure 7.7 ARM946E-S CLK to AHB HCLK Sampling

In Figure 7.7, the slave peripheral has input setup and hold times and
output hold and valid times relative to HCLK. The ARM946E-S has input
setup and hold times and output hold and valid times relative to CLK’,
which is the clock at the bottom of the clock tree. For optimal
performance, use clock tree insertion to position HCLK to match CLK’.

7.4.1.2 Hierarchical Clock Tree Insertion

If you perform clock tree insertion on the ARM946E-S before it is
embedded, you can add buffers on input data to match the clock tree, so
that the setup and hold times are relative to the top-level CLK. This is
safe at the expense of extra buffers in the data input path.

The HCLK domain AHB peripherals must still meet the ARM946E-S input
setup and hold requirements. Since the ARM946E-S inputs and outputs
are now relative to CLK, the outputs appear comparatively later by the
value of the insertion delay. This ultimately leads to lower AHB
performance.

AHB Slave Mux

AHB
Slave

HADDR[31:0]

CLK’

Clock Tree

HCLKEN

HCLK

CLK

ARM946E-S

HRDATA[31:0]

From Other
AHB Slaves

Clock
Divider

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

7-10 Bus Interface Unit and Write Buffer
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

7.5 Write Buffer

The ARM946E-S provides a write buffer to improve system performance.
The write buffer has a 16-entry FIFO. Each entry can be either address
or data. The type of entry is determined by the setting of an address/data
flag. Each address entry is tagged with the transfer size, as indicated by
the ARM9E-S core (byte, halfword, or word).

Write buffer behavior is controlled by the protection region attributes of
the store being performed and the D-cache and Protection Unit enable
status. This control is indicated by the Cacheable data bit (Cd) and the
Write Buffer Control bit (Bd) from the Protection Unit.

The state of the Cd bit is based on three factors: the cacheable attribute
for the particular protection region, the D-cache enable, and the
Protection Unit enable.

The state of the Bd bit is based on two factors: the bufferable attribute
for the particular protection region and the Protection Unit enable.

All accesses are initially noncacheable and nonbufferable until you have
programmed and enabled the Protection Unit. You cannot use the write
buffer while the Protection Unit is disabled.

On reset, all entries in the write buffer are invalidated.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Write Buffer 7-11
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

7.5.1 Write Buffer Operation

The write buffer is used when the D-cache hits and/or misses, depending
on the mode of operation. Table 7.2 shows how the Cd and Bd bits
control the behavior of the write buffer.

Table 7.2 Data Write Modes

Cd Bd Access Mode Description

0 0 NCNB
(noncacheable,
nonbufferable)

Data reads and writes are not cached, and they can be aborted
externally. Writes are not buffered, so the processor is stalled until
the external access is performed. NCNB reads bypass the write
buffer.

0 1 NCB
(noncacheable,
bufferable)

Data reads and writes are not cached. Writes are buffered, and so
they cannot be aborted externally. Reads can be aborted
externally. Reads cause the write buffer to drain.

If the D-cache hits for this type of access, there has been a
programming error. D-cache hits are ignored, and the D-cache line
is not updated for a read.

Swap instruction operations on data in an NCB region are made
to perform NCNB type accesses and are not buffered.

1 0 WT (write through) Searches the D-cache for reads and writes. Reads that miss in the
D-cache cause a line fill. Reads that hit in the D-cache do not
perform an external access. All writes are buffered, regardless of
whether they hit or miss in the D-cache. Writes that hit in the
D-cache update the cache, but do not mark the cache line as dirty,
because the write is also sent to the write buffer. Writes cannot be
externally aborted. D-cache line fills cause the write buffer to drain
before the line fill starts.

1 1 WB (write back) Searches the D-cache for reads and writes. Reads that miss in the
D-cache cause a line fill. Reads that hit in the D-cache do not
perform an external access. Writes that miss in the D-cache are
buffered. Writes that hit in the D-cache update the cache line,
mark it as dirty, and do not send the data to the write buffer.
D-cache write-backs are buffered. Writes (write-miss and
write-back) cannot be externally aborted. D-cache line fills cause
the write buffer to drain before the line fill starts.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

7-12 Bus Interface Unit and Write Buffer
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

7.5.2 Enabling and Disabling the Write Buffer

You cannot directly enable or disable the write buffer. However, you can
prevent the write buffer from being used by setting the properties of a
memory region to NCNB, or by disabling the Protection Unit.

7.5.3 Using Self-Modifying Code

Instruction fetches and NCNB reads bypass the write buffer. If you write
self-modifying code to a bufferable or cacheable region, then it is
essential that you drain the write buffer before fetching instructions from
these addresses.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual 8-1
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 8
External Coprocessor
Interface

This chapter describes the ARM946E-S pipelined external coprocessor
interface. It contains the following sections:

• Section 8.1, “About the External Coprocessor Interface”

• Section 8.2, “Coprocessor Instructions”

• Section 8.3, “LDC/STC Instructions”

• Section 8.4, “MCR/MRC Instructions”

• Section 8.5, “Interlocked MCR Instructions”

• Section 8.6, “CDP Instructions”

• Section 8.7, “Privileged Instructions”

• Section 8.8, “Busy-Waiting and Interrupts”

8.1 About the External Coprocessor Interface

The ARM946E-S fully supports the connection of on-chip coprocessors
through an external coprocessor interface. All types of coprocessor
instructions are supported. For a description of all the interface signals
referred to in this chapter, see the ARM9E-S Technical Reference
Manual.

Coprocessors determine the instructions they must execute using a
pipeline follower in the coprocessor. As each instruction arrives from
memory, it enters both the ARM9E-S pipeline and the coprocessor
pipeline. To avoid being a critical path for the instruction, the coprocessor
pipeline operates one clock cycle behind the ARM9E-S pipeline.
However, there is a mechanism inside the ARM946E-S that stalls the
ARM9E-S pipeline, so the external coprocessor pipeline can catch up.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

8-2 External Coprocessor Interface
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

For that reason, consider the two pipelines synchronized. The ARM9E-S
processor informs the coprocessor when instructions move from decode
to execute, and whether the instruction must be executed or not.

To enable coprocessors to continue executing data operations while the
ARM9E-S pipeline is stalled (for example, when waiting for a cache line
fill to occur), the coprocessor receives a clock (CLK) and a clock enable
signal (CPCLKEN).

If CPCLKEN is LOW on the rising edge of CLK, then the ARM9E-S
pipeline is stalled and the coprocessor pipeline must not advance.
Figure 8.1 indicates the timing for these signals and when the
coprocessor pipeline must advance its state.

Figure 8.1 Coprocessor Clocking

The Coprocessor clock is the result of ORing CLK with the inverse of
CPCLKEN. This is one technique for generating a clock that reflects the
ARM9E-S core pipeline advancing.

8.2 Coprocessor Instructions

There are three classes of coprocessor instructions:

CLK

CPCLKEN

Coprocessor
Clock

LDC/STC Load from memory to coprocessor or store from coprocessor to
memory

MCR/MRC Register transfer between coprocessor and ARM processor core

CDP Coprocessor data operation

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

LDC/STC Instructions 8-3
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

8.3 LDC/STC Instructions

The Load/Store Coprocessor from/to Memory (LDC/STC) instructions
are used to transfer data to and from external coprocessor registers and
memory. For the ARM946E-S, the memory can be either internal
memory (cache or tightly coupled SRAM) or the AHB depending on the
address range of the access and the Protection Unit settings.

Figure 8.2 shows the cycle timing for the LDC/STC operations.

Figure 8.2 LDC/STC Cycle Timing

In the example shown in Figure 8.2, four data words are transferred.
What the coprocessor drives on the CHSDE[1:0] and CHSEX[1:0] buses
determines the number of words transferred.

As with all other instructions, the ARM9E-S performs the main decode
off the rising edge of the clock during the Decode stage. From this, the
core commits to executing the instruction, so it does an instruction fetch.
The coprocessor instruction pipeline keeps in step with the ARM9E-S
processor by monitoring nCPMREQ. This is a registered version of the
ARM9E-S instruction memory request signal (InMREQ).

Coprocessor
Pipeline

CPLATECANCEL

Fetch Decode Execute Execute Execute Execute Memory Write

(GO) (GO) (GO) (LAST)

CLK

CPINSTR[31:0]

nCPMREQ

CPPASS

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
LDC

CPDIN[31:0]
STC

LDC

GO

GO GO LAST Ignored

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

8-4 External Coprocessor Interface
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

At the rising edge of CLK, if CPCLKEN is HIGH and nCPMREQ is LOW,
an instruction fetch is taking place. On the next rising edge of the clock,
when CPCLKEN is HIGH, the coprocessor instruction bus
(CPINSTR[31:0]) contains the fetched instruction.

In this case, the following occurs:

1. The last instruction fetched enters the decode stage of the
coprocessor pipeline.

2. The instruction in the decode stage of the coprocessor pipeline
enters its execute stage.

3. The fetched instruction is sampled.

In all other cases, the ARM9E-S pipeline is stalled, and the coprocessor
pipeline does not advance.

During the execute stage, the condition codes are compared with the
status flags to determine whether the instruction can actually execute.
The output CPPASS is asserted (HIGH) if the instruction in the execute
stage of the coprocessor pipeline:

• Is a coprocessor instruction

• Has passed its condition codes

If a coprocessor instruction busy-waits, CPPASS is asserted on every
cycle until the coprocessor instruction is executed. If an interrupt occurs
during busy-waiting, CPPASS is driven LOW, and the coprocessor stops
execution of the coprocessor instruction.

Another output, CPLATECANCEL, cancels a coprocessor instruction
when the instruction preceding it causes a Data Abort. This output is
valid on the rising edge of CLK on the cycle that follows the first execute
cycle of the coprocessor instruction. This is the only cycle in which
CPLATECANCEL can be asserted.

On the rising edge of the clock, the ARM9E-S processor examines the
coprocessor handshake signals, CHSDE[1:0] or CHSEX[1:0], based on
the following criteria:

• If a new instruction is entering the execute stage in the next cycle, it
examines CHSDE[1:0].

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

LDC/STC Instructions 8-5
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

• If the currently executing coprocessor instruction requires another
execute cycle, it examines CHSEX[1:0].

8.3.1 Coprocessor Handshake States

The handshake signals encode one of four states: ABSENT, WAIT, GO,
and LAST. Table 8.1 describes these four handshake states.

Table 8.1 Coprocessor Handshake States

State Description

ABSENT If there is no coprocessor attached that can execute the coprocessor instruction, the
handshake signals indicate the ABSENT state. In this case, the ARM9E-S takes the
undefined instruction trap.

WAIT If there is a coprocessor attached that can handle the instruction, but not immediately,
the coprocessor handshake signals are driven to indicate that the ARM9E-S processor
core must stall until the coprocessor can catch up. This is known as the busy-wait
condition. In this case, the ARM9E-S processor core loops in an IDLE state waiting for
CHSEX[1:0] to be driven to another state, or for an interrupt to occur.

If CHSEX[1:0] changes to ABSENT, the undefined instruction trap is taken.

If CHSEX[1:0] changes to GO or LAST, the instruction proceeds as described below.

If an interrupt occurs, the ARM9E-S processor is forced out of the busy-wait state. This
is indicated to the coprocessor by the CPPASS signal going LOW. The instruction is
restarted later and so the coprocessor must not commit to the instruction (it must not
change any coprocessor state) until it has seen CPPASS HIGH at the same time as the
handshake signals indicate the GO or LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction immediately, and
that it requires another cycle of execution. Both the ARM9E-S processor core and the
coprocessor must also consider the state of the CPPASS signal before actually
committing to the instruction. For an LDC or STC instruction, the coprocessor instruction
drives the handshake signals with GO when two or more words still have to be
transferred. When only one more word remains to be transferred, the coprocessor drives
the handshake signals with LAST.

During the Execute stage, the ARM9E-S processor core outputs the address for the
LDC/STC. Also in this cycle, DnMREQ is driven LOW, indicating to the ARM946E-S
memory system that a memory access is required at the data end of the device. The
timing for the data on CPDOUT and CPDIN is shown in Figure 8.2 on page 8-3.

LAST You can use an LDC or STC for more than one item of data. If this is the case, possibly
after busy-waiting, the coprocessor drives the coprocessor handshake signals with a
number of GO states, and in the penultimate cycle it drives LAST. The LAST state
indicates that the next transfer is the final one. If there is only one transfer, the sequence
is WAIT, WAIT, ..., LAST.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

8-6 External Coprocessor Interface
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

8.3.2 Coprocessor Handshake Encoding

Table 8.2 shows the encoding for the CHSDE[1:0] and CHSEX[1:0]
handshake signals.

Note: If an external coprocessor is not attached in the
ARM946E-S embedded system, the CHSDE[1:0] and
CHSEX[1:0] handshake inputs must be tied off to indicate
ABSENT.

8.3.3 Multiple External Coprocessors

If multiple external coprocessors are attached to the ARM946E-S
interface, you can combine the handshaking signals by ANDing bit 1 and
ORing bit 0. In the case of two coprocessors that have handshaking
signals (where coprocessor 1 signals are CHSDE1/CHSEX1 and
coprocessor 2 signals are CHSDE2/CHSEX2), combine the signals as
shown below:

CHSDE[1] = CHSDE1[1] AND CHSDE2[1]

CHSDE[0] = CHSDE1[0] OR CHSDE2[0]

CHSEX[1] = CHSEX1[1] AND CHSEX2[1]

CHSEX[0] = CHSEX1[0] OR CHSEX2[0].

Table 8.2 Handshake Encoding

CHSDE/CHSEX[1:0] Definition

10 ABSENT

00 WAIT

01 GO

11 LAST

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

MCR/MRC Instructions 8-7
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

8.4 MCR/MRC Instructions

The MCR (Move CPU Register to Coprocessor Register) instruction and
the MRC (Move from Coprocessor Register to CPU Register) instruction
have timing cycles that are very similar to the STC/LDC instructions.
Figure 8.3 provides an example with a busy-wait state.

Figure 8.3 MCR/MRC Transfer Timing with Busy-Wait

First, nCPMREQ is driven LOW to indicate that the instruction on
CPINSTR[31:0] is entering the Decode stage of the pipeline. This causes
the coprocessor to decode the new instruction and drive CHSDE[1:0] as
required. In the next cycle, nCPMREQ is driven LOW to indicate that the
instruction has now been issued to the execute stage. If the condition
codes pass, and therefore, the instruction is to be executed, then the
CPPASS signal is driven HIGH and the CHSDE[1:0] handshake bus is
examined. It is ignored in all other cases.

For any successive execute cycles, the CHSEX[1:0] handshake bus is
examined. When the LAST condition is observed, the instruction is

Coprocessor
Pipeline

CPLATECANCEL

Fetch Decode Execute Execute Memory Write

(WAIT) (LAST)

CLK

CPINSTR[31:0]

nCPMREQ

CPPASS

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
MCR

CPDIN[31:0]
MRC

MCR/MRC

IgnoredLAST

Coproc
Data

Coproc Data

WAIT

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

8-8 External Coprocessor Interface
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

committed. In the case of an MCR instruction, the CPDOUT[31:0] bus is
driven with the registered data during the coprocessor write stage. In the
case of an MRC instruction, CPDIN[31:0] is sampled at the end of the
ARM9E-S processor Memory stage and written to the destination
register during the next cycle.

8.5 Interlocked MCR Instructions

If the data for an MCR instruction is not available inside the ARM9E-S
processor pipeline during its first decode cycle, then the ARM9E-S
processor pipeline interlocks for one or more cycles until the data is
available. For example, this interlocking applies when the register being
transferred is the destination from a preceding LDR instruction. In this
situation, the MCR instruction enters the decode stage of the coprocessor
pipeline, and then remains there a number of cycles before entering the
execute stage.

Figure 8.4 gives an example of an interlocked MCR that also has a
busy-wait state.

Figure 8.4 Interlocked MCR Timing with Busy-Wait

Coprocessor
Pipeline

CPLATECANCEL

Fetch Decode Execute Execute Memory Write

(WAIT) (LAST)

CLK

CPINSTR[31:0]

nCPMREQ

CPPASS

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
MCR

CPDIN[31:0]
MRC

IgnoredLAST

WAIT WAIT

Decode

(Interlock)

MCR

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

CDP Instructions 8-9
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

8.6 CDP Instructions

Coprocessor Data Processing (CDP) instructions normally execute in a
single cycle. As with all the previous cycles, nCPMREQ is driven LOW
to indicate when an instruction is entering the decode stage and then the
execute stage of the pipeline. If the instruction is to be executed, the
CPPASS signal is driven HIGH during the execute cycle. If the
coprocessor can execute the instruction immediately, it drives
CHSDE[1:0] with LAST. If the instruction requires a busy-wait cycle, the
coprocessor drives CHSDE[1:0] with WAIT and then CHSEX[1:0] with
LAST.

Figure 8.5 shows a CDP instruction that is cancelled because the
previous instruction caused a Data Abort.

Figure 8.5 Late Cancelled CDP Instruction

In this example, the CDP instruction enters the execute stage of the
pipeline and is signaled to execute by CPASS. In the following cycle,
CPLATECANCEL is asserted. This event forces the coprocessor to
terminate execution of the CDP instruction and prevents the instruction
from causing any coprocessor state changes.

Coprocessor
Pipeline

CPLATECANCEL

Fetch Decode Execute Memory

(Data) (Aborted)

CLK

CPINSTR[31:0]

nCPMREQ

CPPASS

CHSDE[1:0]

CHSEX[1:0]

LAST

Ignored

Instruction

(Cancelled)

CPRT

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

8-10 External Coprocessor Interface
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

8.7 Privileged Instructions

The coprocessor can restrict some instructions for use in Privileged
mode only. To do this, the coprocessor tracks the nCPTRANS output.
When nCPTRANS is LOW, the processor is in User mode. When it is
HIGH, the processor is in Privileged mode. Figure 8.6 shows how
nCPTRANS changes after a mode change.

Figure 8.6 Privileged Instructions

The first two CHSDE[1:0] responses are ignored by the ARM9E-S
processor, because only the final CHSDE[1:0] response counts (when
the instruction moves from decode into execute). This method allows the
coprocessor to change its response as nCPTRANS changes.

8.8 Busy-Waiting and Interrupts

The coprocessor is permitted to stall, or busy-wait, the processor during
the execution of a coprocessor instruction. For example, the coprocessor
can do this if it is busy with an earlier coprocessor instruction. To do so,
the coprocessor associated with the decode stage instruction drives
WAIT onto CHSDE[1:0]. When the instruction concerned enters the

Coprocessor
Pipeline

CPLATECANCEL

Fetch Decode Execute Memory Instruction

CLK

CPINSTR[31:0]

nCPMREQ

CPPASS

CHSDE[1:0]

CHSEX[1:0]

CPRT

Ignored

Ignored

Decode Decode

Aborted

Ignored LAST

nCPTRANS New ModeOld Mode

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Busy-Waiting and Interrupts 8-11
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

execute stage of the pipeline, the coprocessor can drive WAIT onto
CHSEX[1:0] for as many cycles as necessary to keep the instruction in
the busy-wait loop.

For interrupt latency reasons, the coprocessor can be interrupted while
busy-waiting. This causes the instruction to be abandoned. Abandoning
execution is done through CPPASS. The coprocessor must monitor the
state of CPPASS during every busy-wait cycle. If it is HIGH, the
instruction must still be executed. If it is LOW, the instruction must be
abandoned.

Figure 8.7 shows a busy-waiting coprocessor instruction abandoned due
to an interrupt. CPLATECANCEL is also asserted as a result of the
execute interruption.

Figure 8.7 Busy-Waiting and Interrupts

Coprocessor
Pipeline

CPLATECANCEL

Fetch Decode Execute Execute Execute Execute Execute

(WAIT) (WAIT) (WAIT) (WAIT)

CLK

CPINSTR[31:0]

nCPMREQ

CPPASS

CHSDE[1:0]

CHSEX[1:0]

CPInstr

WAIT

WAIT WAIT WAIT Ignored

(Interrupted)

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

8-12 External Coprocessor Interface
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual 9-1
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

Chapter 9
Debug Interface

This chapter describes the ARM946E-S debug interface. It contains the
following sections:

• Section 9.1, “Debug Systems”

• Section 9.2, “Debug Operations Overview”

• Section 9.3, “Debug Using the Serial Interface and TAP Controller”

• Section 9.4, “Debug Using the EmbeddedICE-RT”

• Section 9.5, “Breakpoints, Watchpoints, and Debug Requests”

• Section 9.6, “Determining the Core and System State”

• Section 9.7, “Real-Time Debug”

• Section 9.8, “ARM9E-S Clock Domains”

• Section 9.9, “Synchronizing Debug Clocks”

A more detailed description of the ARM9E-S debug features and JTAG
interface is provided in the ARM9E-S Technical Reference Manual,
Appendix D, “Debug in Depth.”

9.1 Debug Systems

The ARM946E-S forms one component of a debug system, a system
that ranges from a high-level, user debugging capability to the low-level
hardware interfaces in the ARM946E-S. Figure 9.1 shows a typical
debug system.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-2 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

Figure 9.1 Typical Debug System

A debug system typically has three parts:

• Debug Host

• Protocol Converter

• ARM946E-S Debug Target

The debug host and the protocol converter are system-dependent. The
following subsections describe each of the debug system blocks.

9.1.1 Debug Host

The debug host is a computer that is running a software debugger, such
as armsd. The debug host allows you to issue high-level commands,
such as setting breakpoints or examining memory contents.

9.1.2 Protocol Converter

An interface, such as a parallel port, connects the debug host to the
ARM946E-S development system. The messages broadcast over this
connection must be converted to the interface signals of the
ARM946E-S. The protocol converter does the conversion.

For example, Multi-ICE

Development system containing ARM946E-S

Host computer running ARM or third party toolkit

Debug
Host

Protocol
Converter

Debug
Target

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Debug Systems 9-3
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

9.1.3 ARM946E-S Debug Target

The ARM9E-S processor core within the ARM946E-S has hardware
extensions that ease debugging at the lowest level. The debug
extensions make it possible to:

• Stall the processor program execution

• Examine the core internal state

• Examine the state of the memory system

• Resume program execution

Figure 9.2 shows the major blocks of the ARM9E-S processor and
associated debug logic.

Figure 9.2 ARM9E-S Processor and Debug Logic

The blocks in Figure 9.2 are briefly described as follows:

EmbeddedICE-RT

ARM9E-S
TAP Controller

ARM9E-S

Coprocessor15

Processor
Core

Scan Chain 2
Scan Chain 1

Scan Chain 15

Scan Chain 3Boundary Scan

ARM9E-S Processor
Core

Includes debug support hardware

EmbeddedICE-RT Logic Contains a set of registers and comparators used to
generate debug exceptions (such as breakpoints)

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-4 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

9.2 Debug Operations Overview

The embedded ARM9E-S processor core provides debug support
capabilities for the ARM946E-S. The ARM946E-S debug interface is
based on IEEE Std. 1149.1- 1990, Standard Test Access Port and
Boundary-Scan Architecture. See this standard for an explanation of the
terms used in this chapter.

The ARM9E-S processor core, which contains hardware extensions for
advanced debugging features, makes it easier to develop the hardware,
the application software, and operating systems.

These debug extensions allow you to force the processor to stop for a
particular:

• instruction fetch - using breakpoints

• data access - using watchpoints

• external debug request

The condition when stopped is known as the debug state. In the debug
state, the processor core and ARM946E-S memory system are
effectively stopped and isolated from the rest of the system. This
condition is known as halt mode operation and allows you to examine the
internal state of the ARM9E-S core, ARM946E-S system, and external
AHB state, while all other system activity continues normally. When

TAP Controller Controls the scan chains using the JTAG serial
interface

CP15 Contains system configuration and control state

Boundary Scan Includes the optional external scan chain

Scan Chain 1 Provides access to the processor instruction and data
buses

Scan Chain 2 Provides access to the registers in the
EmbeddedICE-RT

Scan Chain 3 Provides control of the optional external boundary
scan chain

Scan Chain 15 Provides access to the CP15 register set and the
cache

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Debug Using the Serial Interface and TAP Controller 9-5
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

debug has been completed, the ARM9E-S restores the processor and
system state, and resumes program execution.

The examination of the internal state of the ARM946E-S uses a
JTAG-style interface that allows the serial insertion of instructions into the
instruction pipeline, and exports the contents of the ARM9E-S core
registers. The exported data is serially shifted out without affecting the
rest of the system.

In addition, the ARM9E-S supports a real-time debug mode, where
instead of generating a breakpoint or watchpoint, an internal Instruction
Abort or Data Abort is generated. This mode is known as monitor mode
operation.

When used in conjunction with a debug monitor program activated by the
abort exception entry, you can debug the ARM946E-S while allowing the
execution of critical interrupt service routines. The debug monitor
program typically communicates with the debug host over the
ARM946E-S debug communication channel. Real-time debug is
described in Section 9.7, “Real-Time Debug,” page 9-28.

9.3 Debug Using the Serial Interface and TAP Controller

The JTAG Interface includes six serial registers and a TAP controller
state machine.

9.3.1 Serial Registers

The JTAG interface includes the following serial registers:

• Boundary Scan Register

Contains boundary scan data.

• Bypass Register

A one-bit shift register that contains test data.

• Device ID Code Register

The content of this register identifies the device. TAPID[31:0] drive
this register. Tie these signals to a constant value that represents the
unique device ID code.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-6 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

• TAP Instruction Register

The content of this four-bit register selects the register (boundary
scan, bypass, device ID, scan path select, scan) to be read and
written when the TAP controller is in the Shift-DR state.

The TAP instruction register does not include a parity bit. During the
CAPTURE-IR state, a fixed value of 0b0001 is loaded into this
register.

• Scan Path Select Register

This register selects the scan path.

• Scan Register

Contains data shifted in from the associated scan path.

9.3.2 TAP Controller State Machine

Figure 9.3 shows the state transitions that occur in the TAP controller.

Each state is encoded as a hexadecimal value, which is output on
TAPSM[3:0]. These values are shown in the diagram.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Debug Using the Serial Interface and TAP Controller 9-7
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

Figure 9.3 TAP Controller State Diagram

The TAP controller states are briefly defined as follows:

• Test-Logic-Reset

Resets the debug interface. See Section 9.3.2.1, “Resetting the TAP
Controller” for more information.

• Run-Test/Idle

The TAP controller is idle and can be left in this state when not used.

• Select-IR-Scan and Select-DR-Scan

These states serve as intermediate states on the path to selecting
either instruction or data register update.

Test-Logic-Reset
TMS = 1

Run-Test/Idle

0

Select-DR-Scan10

Capture-DR

0

0

Shift-DR

1

Exit1-DR

0

Pause-DR

1

Exit2-DR

1

Update-DR

0

0

01

1

0

1

Select-IR-Scan

Capture-IR

0

0

Shift-IR

1

Exit1-IR

0

Pause-IR

1

Exit2-IR

1

Update-IR

0

0

01

1

0

1

1
1

0xF

0xC 0x7

0x6

0x2

0x1

0x3

0x0

0x5

0x4

0xE

0xA

0x9

0xB

0x8

0xD

Note:
1. The state transition values (0 and 1) in this diagram correspond

to the Test Mode Select input signal, DBGTMS.
2. The hexadecimal value in each bubble represents the

DBGTAPSM[3:0] output.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-8 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

• Capture-DR

The action taken during this state depends on the TAP instruction
being executed. See Table 9.1 for TAP instruction descriptions.

• Capture-IR

During this state, 0x1 is loaded into the TAP instruction register.

• Shift-DR

The data register is inserted in the TDI/TDO shift path and shifted on
each rising edge of TCK.

• Shift-IR

The instruction register is inserted in the TDI/TDO shift path and
shifted on each rising edge of TCK.

• Exit1-DR and Exit1-IR

These are temporary states with no effect.

• Pause-DR and Pause-IR

This state is temporary with no effect, except pausing.

• Exit2-DR and Exit2-IR

These states are temporary with no effect.

• Update-DR

The action taken during this state depends on the TAP instruction
being executed. See Table 9.1 for TAP instruction descriptions.

• Update-IR

During this state, the value in the TAP instruction register is the
current instruction.

9.3.2.1 Resetting the TAP Controller

To force the TAP controller into the correct state after power-up of the
device, apply a reset pulse to the DBGnTRST signal or cycle the JTAG
state machine through the TEST-LOGIC-RESET state. Before using the
JTAG interface, drive DBGnTRST LOW, and then HIGH again. If you do
not intend to use the boundary scan interface, tie the DBGnTRST input
permanently LOW.

Note: A clock on TCK is not necessary to reset the device.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Debug Using the Serial Interface and TAP Controller 9-9
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

Reset causes the following action:

1. Reset forces exit from the debug state. The boundary scan chain
cells do not intercept any of the signals passing between the external
system and the core.

2. The IDCODE instruction is selected. If the TAP controller is put into
the SHIFT-DR state and TCK is pulsed, the contents of the ID
register are clocked out of TDO.

9.3.2.2 JTAG Interface Signals and Pull-Up Resistors

The IEEE 1149.1 standard effectively requires TDI and TMS to have
internal pull-up resistors. To minimize static current draw, these resistors
are not included in the ARM9E-S processor core. Accordingly, the four
inputs to the test interface (the TDO, TDI, TMS, and TCK) must all be
driven to valid logic levels to achieve normal circuit operation.

9.3.2.3 Test Access Port Instructions

This section describes how the TAP controller state machine controls the
serial JTAG interface when the following instructions are executed:

• EXTEST - External test

• SCAN_N - Scan-in

• INTEST - Internal test

• IDCODE - Device ID code

• BYPASS - Bypass

• SAMPLE/PRELOAD - Sample/preload

• RESTART - Restart

In this section, it is assumed that TDI and TMS are sampled on the rising
edge of TCK, and all output transitions on TDO occur as a result of the
falling edge of TCK.

Table 9.1 provides a description of each TAP instruction.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-10 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

.

Table 9.1 Test Access Port Instruction Descriptions

Instruction Description

EXTEST (0000) The EXTEST instruction puts the selected scan chain and all scan cells in
test mode, and it connects the selected scan chain between TDI and TDO.

In the CAPTURE-DR state, inputs from the system logic and outputs from
the output scan cells to the system are captured by the scan cells.

In the SHIFT-DR state, previously captured test data is shifted out of the scan
chain on TDO, while new test data is shifted in through TDI. This data is
applied immediately to the system logic and system pins.

SCAN_N (0010) This instruction connects the Scan Path Select register between TDI and
TDO.

During the CAPTURE-DR state, a fixed value of 0b10000 is loaded into the
Scan Path Select register.

During the SHIFT-DR state, the ID number of the desired scan path is shifted
into the Scan Path Select register.

In the UPDATE-DR state, the Scan register of the selected scan chain is
connected between TDI and TDO, and it remains connected until a
subsequent SCAN_N instruction is issued. On reset, scan chain 3 is selected
by default. The Scan Path Select register is 5 bits long in this implementation,
although no finite length is specified.

INTEST (1100) The INTEST instruction puts the selected scan chain and all scan cells in test
mode, and it connects the selected scan chain between TDI and TDO.

In the CAPTURE-DR state, the output and input scan cells capture the value
of the data applied from the core logic and the system logic, respectively.

In the SHIFT-DR state, previously captured test data is shifted out of the scan
chain on TDO, while new test data is shifted in through TDI.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Debug Using the Serial Interface and TAP Controller 9-11
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

IDCODE (1110) The IDCODE instruction connects the Device Identification (ID) register
between TDI and TDO. The ID register is a 32-bit register that allows the
manufacturer, part number, and version of a component to be determined
through the TAP. The ID register is loaded from the TAPID[31:0] input bus.
This input must be tied to a constant value that provides a unique device ID
code.

When the instruction register is loaded with the IDCODE instruction, all the
scan cells are placed in their normal (system) mode of operation.

In the CAPTURE-DR state, the ID register captures the device identification
code.

In the SHIFT-DR state, the previously captured device identification code is
shifted out of the ID register on TDO, while data is shifted into the ID register
through the TDI pin.
In the UPDATE-DR state, the ID register is not changed.

BYPASS (1111) The BYPASS instruction connects the 1-bit shift Bypass register between TDI
and TDO.

When the BYPASS instruction is loaded into the instruction register, all the
scan cells are placed in their normal (system) mode of operation. This
instruction has no effect on the system pins.

In the CAPTURE-DR state, the Bypass register captures a logic 0.

In the SHIFT-DR state, test data shifts into the Bypass register on TDI, and
then after a delay of one TCK cycle, it shifts out on TDO. The first bit shifted
out is a 0.

The Bypass register is not affected by the UPDATE-DR state.

Note: All unused instruction codes default to the BYPASS instruction.

Table 9.1 Test Access Port Instruction Descriptions (Cont.)

Instruction Description

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-12 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

9.3.3 Scan Chains

ARM946E-S supports 32 scan chains. Three of the scan chains are
located inside the ARM946E-S. The scan chains allow testing,
debugging, and programming of the EmbeddedICE macrocell watchpoint
units.

Table 9.2 lists the scan chains and their functions.

SAMPLE/PRELOAD
(0011)

When the TAP instruction register is loaded with the SAMPLE/PRELOAD
instruction, all the scan cells of the selected scan chain are placed in the
normal mode of operation.

In the CAPTURE-DR state, a snapshot of the signals of the boundary scan
is taken on the rising edge of TCK. Normal system operation is not affected.

In the SHIFT-DR state, sampled test data shifts out of the boundary scan on
TDO, while new data shifts in on TDI to preload the boundary scan parallel
input latch. This data is not applied to the system logic or system pins while
the SAMPLE/PRELOAD instruction is active.
You must use this instruction to preload the Boundary Scan register with
known data prior to executing INTEST or EXTEST instructions.

RESTART (0100) This instruction restarts the processor on exit from the debug state.
The RESTART instruction connects the Bypass register between TDI and
TDO, and the TAP controller behaves as if the BYPASS instruction is loaded.
The processor re-synchronizes back to the memory system when the
RUN-TEST/IDLE state is entered.

Table 9.1 Test Access Port Instruction Descriptions (Cont.)

Instruction Description

Table 9.2 ARM946E-S Scan Chain Functions

Scan Chain Function

0 Reserved

1 Debug

2 EmbeddedICE-RT logic programming

3 External boundary scan

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Debug Using the Serial Interface and TAP Controller 9-13
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

9.3.3.1 Scan Chain 1

Scan chain 1 is 67 bits long. Its primary function is to provide debugging
support and access to the core instruction and data buses.

Table 9.3 shows the bit allocation for scan chain 1.

During debugging operations, the value of the SYSSPEED control bit
determines whether the ARM9E-S core executes an instruction at
system speed or not.

After the ARM946E-S enters the debug state, the first time SYSSPEED
is captured and scanned out tells the debugger whether the core has
entered debug state due to a breakpoint (SYSSPEED LOW) or a
watchpoint (SYSSPEED HIGH). A watchpoint and a breakpoint can
occur simultaneously. When a watchpoint condition occurs, the debugger
must examine the WPTANDBKPT bit to determine whether the
instruction currently in the Execute stage of the pipeline is breakpointed.
If it is, WPTANDBKPT is HIGH, otherwise it is LOW.

4–14 Reserved

15 Control coprocessor

16–31 Unassigned

Table 9.2 ARM946E-S Scan Chain Functions (Cont.)

Scan Chain Function

Table 9.3 Scan Chain 1 Bit Allocation

Bit Function

67:35 Data values

34 SYSPEED Control

33 WPTANDBKPT Control

32 Reserved

31:0 Instruction values

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-14 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

9.3.3.2 Scan Chain 2

Scan chain 2 is 37 bits long. This scan chain allows access to the
EmbeddedICE-RT logic registers. The order of the scan chain, from
DBGTDI to DBGTDO, is [37:0].

Table 9.4 shows the bit allocation for scan chain 2.

During CAPTURE-DR, no action occurs for scan chain 2.

During SHIFT-DR, a data value is shifted into the serial register.
Bits 36:32 specify the address of the EmbeddedICE-RT register to be
accessed.

During UPDATE-DR, either read or write the EmbeddedICE-RT register
depending on the value of bit 37.

9.3.3.3 Scan Chain 3

Scan chain 3 allows ARM946E-S to control an optional external
boundary scan chain. You determine the length of scan chain 3.

9.3.3.4 Scan Chain 15

Scan chain 15 provides debug access to CP15 registers. This access
allows you to control the system state within the ARM946E-S while in the
debug mode. For example, you can use it to enable or disable the SRAM
before performing a debug load or store.

You can also use scan chain 15 to interrogate the cache.

Table 9.4 Scan Chain 2 Bit Allocation

Bit Function

37 Read/write control. Read = 0.
Write = 1.

36:32 Register address

31:0 Data value

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Debug Using the Serial Interface and TAP Controller 9-15
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

Scan chain 15 is 39 bits long. Table 9.5 shows the order of the scan
chain bits from the DBGTDI input to the DBGTDO output.

Table 9.6 shows the address mapping of scan chain 15 to CP15
registers.

Table 9.5 Scan Chain 15 Bit Allocation

Bits Contents

38 Read/write control. Read = 0.
Write = 1.

37:32 CP15 register address

31:0 CP15 data value

Table 9.6 Mapping of Scan Chain 15 Address Field to CP15 Registers

Register Address Register
Number

CP15 Register

37 [36:33] 32 Name Type

0 0000 0 C0.ID ID register Read

0 0000 1 C0.C Cache type Read

0 0001 0 C1 Control Read/write

0 0010 0 C2.D Data cacheable bits Read/write

0 0010 1 C2.I Instruction cacheable bits Read/write

0 0011 0 C3 Write buffer control Read/write

0 0100 0 C0.M Tightly coupled memory size Read

0 0101 0 C5.D Data space access permissions Read/write

0 0101 1 C5.I Instruction address access permissions Read/write

1 <Crm>1 0 C6.[7:0] Memory region protection Read/write

0 0111 0 C7.FD Flush data cache Write

0 0111 1 C7.FI Flush instruction cache Write

0 1110 0 C7.FD.s Flush D-cache single (uses C15.C.Ind) Write

0 1110 1 C7.FI.s Flush I-cache single (uses C15.C.Ind) Write

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-16 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

When the TAP controller is in the SHIFT-DR state, the scan chain 15
read/write bit, register address, and register value (for writing) shift in
from TDI.

For a write operation, the register value is updated when the TAP
controller reaches the UPDATE-DR state.

For a read operation, return to SHIFT-DR through CAPTURE-DR to shift
out the register value.

1 1010 1 C7.CD.s Clean D-cache single (uses C15.C.Ind) Write

0 1001 0 C9.D Data cache lockdown Read/write

0 1001 1 C9.I Instruction cache lockdown Read/write

1 1000 1 C9.Dram Data SRAM size/location Read/write

1 1001 1 C9.Iram Instruction SRAM size/location Read/write

0 1101 1 C13.TPID Trace process identifier Read/write

0 1111 0 C15.State Test state Read/write

0 1111 1 C15.Tag Tag BIST control Read/write

1 1111 1 C15.RAM Cache RAM BIST control Read/write

1 1101 0 C15.C.Ind Cache index (address/segment) Read/write

0 1010 0 C15.DC Data cache read/write (uses C15.C.Ind) Read/write

0 1010 1 C15.IC Instruction cache read/write (uses
C15.C.Ind)

Read/write

0 1011 0 C15.DT Data tag read/write (uses C15.C.Ind) Read/write

0 1011 1 C15.IT Instruction tag read/write (uses
C15.C.Ind)

Read/write

1 1110 1 C15.Mem Memory RAM BIST control Read/write

1. For CP15 register 6, CRm corresponds to memory region number [7:0].

Table 9.6 Mapping of Scan Chain 15 Address Field to CP15 Registers (Cont.)

Register Address Register
Number

CP15 Register

37 [36:33] 32 Name Type

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Debug Using the Serial Interface and TAP Controller 9-17
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

9.3.4 Debug Access to the Caches

It is useful for the debugger to examine the instruction and data cache
contents during debug operations. This examination requires two steps:

1. The debugger determines if valid addresses are stored in the cache
and forms tag addresses from the tag contents and the tag index.

2. The debugger uses the generated addresses either to access main
memory or to read individual entries using the CP15 scan chain.

Step 1 – To do this step, the debugger reads the I-cache and D-cache
tag arrays using scan chain 15. The debugger must do this for each entry
set within the cache. Figure 9.4 shows the format of the return data.

Figure 9.4 Tag Address Format

The tag address is formed from the tag contents and the tag index. This
combination ensures that the format of the return data is consistent
regardless of cache size.

Step 2 – Reading individual entries using the CP15 scan chain is useful
if an entry is marked dirty, because this indicates an inconsistency
between the cache contents and main memory.

For the D-cache, the debugger can execute system speed accesses that
hit in the cache and return the cache contents. Writes to the D-cache
from the processor core using this method cause the dirty bits to set for
write-back regions, and main memory is updated for write-through
regions.

If the CP15 scan chain is used for updating the D-cache, only the cache
contents are updated. Writes are not made to main memory. With this
method, you must first program the index/set register with the required
cache index, set, and word values. Figure 9.5 shows the Cache Index
register format.

31 5 4 3 2 1 0

Tag Address Valid Dirty
1

Dirty
2

Set
1

Set
0

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-18 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

Figure 9.5 Cache Index Register Format

Note: Although 27 bits are specified for the tag address, only
those bits required for the particular tag implementation are
used.

The cache index register is also used for writing to the instruction cache.
This is useful for setting software breakpoints within code already in the
cache. It means that you do not have to flush the cache and reload the
entry.

Note: There is no mechanism for detecting that the I-cache has
been updated in this way. The debugger must restore the
original cache contents after executing the breakpoint.

9.4 Debug Using the EmbeddedICE-RT

The ARM9E-S EmbeddedICE-RT logic provides integrated on-chip
debug support for the ARM9E-S core within the ARM946E-S.

EmbeddedICE-RT is programmed serially using the ARM9E-S TAP
controller. Figure 9.6 illustrates the relationship between the core,
EmbeddedICE-RT, and the TAP controller, showing only the signals that
are pertinent to the EmbeddedICE-RT.

31 30 29 N+1 N 5 4 2 1 0

Set SBZ Index Word
Address SBZ

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Debug Using the EmbeddedICE-RT 9-19
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

Figure 9.6 The ARM9E-S, Tap Controller, and EmbeddedICE-RT

The EmbeddedICE-RT logic consists of:

• Two real-time watchpoint units

• Two independent registers:

– Debug Control register

– Debug Status register

• Debug comms channel

The Debug Control register and the Debug Status register provide overall
control of EmbeddedICE-RT operation. For more detailed information
about these registers, refer to the ARM9E-S Technical Reference
Manual, Appendix D, “Debug in Depth.”

DBGEXT[1:0]

DBGCOMMRX

DBGCOMMTX

DBGRNG[1:0]

DBGACK

DBGIEBKPT

EDBGRQ

DBGDEWPT

DBGEN

DBGTCKEN

DBGTMS

DBGTDI

DBGTDO

CLK

EmbeddedICE-RTARM9E-S

DBGnTRST
TAP

Controller

DBGINSTREXEC

DBGRQI

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-20 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

You can program one or both watchpoint units to halt the execution of
instructions by the core. Execution halts when the values programmed
into EmbeddedICE-RT match the values currently appearing on the
address bus, data bus, and various control signals.

Note: You can mask bits so that their values do not affect the
comparison.

You can configure each watchpoint unit to be either a watchpoint
(monitoring data accesses) or a breakpoint (monitoring instruction
fetches). Watchpoints and breakpoints can be data-dependent in halt
mode debug.

9.4.1 Disabling EmbeddedICE-RT

To disable EmbeddedICE-RT, set the DBGEN input LOW.

Note: Hardwiring the DBGEN input LOW permanently disables
debug access.

When DBGEN is LOW, it inhibits DBGDEWPT, DBGIEBKPT, and
EDBGRQ to the core, and DBGACK from the ARM946E-S is always
LOW.

9.4.2 Debug Communications Channel

The ARM9E-S EmbeddedICE-RT logic contains a communications
channel for passing information between the target and the host
debugger. This channel is implemented as coprocessor 14.

The communications channel consists of:

• A 32-bit comms data read register

• A 32-bit comms data write register

• A 6-bit comms control register for synchronized handshaking
between the processor and the asynchronous debugger

These registers are located in fixed locations in the EmbeddedICE-RT
logic register map and are accessed from the processor using MCR and
MRC instructions to coprocessor 14.

In addition to the comms channel registers, the processor can access a
1-bit debug status register for use in the real-time debug configuration.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Debug Using the EmbeddedICE-RT 9-21
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

9.4.3 Debug Comms Channel Registers

There are four Debug Comms Channel registers. Table 9.7 lists the
registers.

For a description of each register and its format, including field and bit
definitions, refer to Section 3.4, “CP14 Registers” in this manual.

9.4.4 Communications Using the Comms Channel

You can send and receive messages using the comms channel.

9.4.4.1 Sending a Message to the Debugger

When the processor has to send a message to the debugger, it must
check that the Comms Data Write register is free for use by finding out
whether the W bit of the Debug Comms Control register is clear.

The processor reads the Debug Comms Control register to check the
status of the W bit:

• If the W bit is clear, the Comms Data Write register is clear.

• If the W bit is set, previously written data has not been read by the
debugger. The processor must continue to poll the control register
until the W bit is clear.

When the W bit is clear, a message is written by a register transfer to
coprocessor 14. As the data transfer occurs from the processor to the
Comms Data Write register, the W bit is set in the Debug Comms Control
register.

Table 9.7 Coprocessor 14 Register Map

Register Name Register Number Notes

Comms Channel Status C0 Read-only

Comms Channel Data Read C1 For reads

Comms Channel Data Write C1 For writes

Debug Status C2 Read/write

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-22 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

The debugger sees both the R and W bits when it polls the Debug
Comms Control register through the JTAG interface. When the debugger
sees that the W bit is set, it can read the Comms Data Write register,
and scan the data out. The action of reading this data register clears the
Debug Comms Control register W bit. At this point, the communications
process can begin again.

9.4.4.2 Receiving a Message from the Debugger

Transferring a message from the debugger to the processor is similar to
sending a message to the debugger. In this case, the debugger polls the
R bit of the Debug Comms Control register.

• If the R bit is LOW, the Comms Data Read register is free, and data
can be placed there for the processor to read.

• If the R bit is set, previously deposited data has not yet been
collected, so the debugger must wait.

When the Comms Data Read register is free, data is written there using
the JTAG interface. The action of this write sets the R bit in the Debug
Comms Control register.

The processor polls the Debug Comms Control register. If the R bit is
set, there is data that can be read using an MRC instruction to
coprocessor 14. The action of this load clears the R bit in the Debug
Comms Control register. When the debugger polls this register and sees
that the R bit is clear, the data has been taken, and the process can now
be repeated.

9.5 Breakpoints, Watchpoints, and Debug Requests

Breakpoints, watchpoints, and external debug requests can cause the
ARM946E-S to enter the debug state. These events are associated with
the following debug interface signals:

• DBGIEBKPT, DBGDEWPT, and EDBGRQ are system requests for
the ARM946E-S to enter the debug state. The three signals indicate
an instruction breakpoint, data watchpoint, and external debug
request, respectively. All three originate from hardware external to
the ARM946E-S.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Breakpoints, Watchpoints, and Debug Requests 9-23
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

• DBGACK acknowledges to the system that the ARM946E-S
processor is in the debug state.

The notations in Figure 9.7 through Figure 9.9 are defined as follows:

1. Fn, Dn, En, Mn, Wn = Fetch, Decode, Execute, Memory, and
Writeback, respectively, for instruction n, where n is the instruction in
INSTR[31:0]

2. LDR = Load register from memory instruction

3. Dp = Any data processing instruction

4. B = Branch instruction

5. Ddebug = Decode debug entry

6. Edebug = Execute debug

7. T = Branch target

9.5.1 Entry into Debug State on Breakpoint

Any instruction fetched from memory is sampled at the end of a cycle.
To apply a breakpoint to that instruction, you must assert the breakpoint
signal by the end of the same cycle. Figure 9.7 illustrates breakpoint
timing.

Figure 9.7 Breakpoint Timing

To extend the breakpoint functionality of the EmbeddedICE-RT logic, you
can add external logic, such as additional breakpoint comparators. The
external logic output must be applied to the DBGIEBKPT input. This

F1
D1
F2

E1
D2
F1

M1
E2
D1

Ddebug
W1
M2
E1

Edebug1

W2
M1

Edebug2

W1

21 3 4

CLK

IA[31:1]

INSTR[31:0]

DBGIEBKPT

DBGACK

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-24 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

signal is ORed with the internally generated Breakpoint signal before
being applied to the ARM9E-S core control logic. The timing of the input
makes it unlikely that data-dependent external breakpoints can occur.

A breakpointed instruction can enter the execute stage of the pipeline,
but state changes that normally occur from executing the instruction are
inhibited. All writes from previous instructions complete as usual.

The decode cycle of the debug entry sequence occurs during the
execute cycle of the breakpointed instruction. The latched Breakpoint
signal forces the processor to start the debug sequence.

9.5.2 Breakpoints and Exceptions

A breakpointed instruction can have a Prefetch Abort associated with it.
If so, the Prefetch Abort takes priority and the breakpoint is ignored. It is
ignored, because if there is a Prefetch Abort, the instruction data might
be invalid and the breakpoint could be data-dependent. Since the data
could be incorrect, the breakpoint might have triggered incorrectly.

SWI and undefined instructions are treated the same as any other
instruction that might incur a breakpoint. Therefore, the breakpoint takes
priority over the SWI or undefined instruction.

On an instruction boundary, if there is a breakpointed instruction and an
interrupt (nIRQ or nFIQ), the interrupt is taken and the breakpointed
instruction is discarded. After the interrupt is serviced, the execution flow
is returned to the original program. The previously breakpointed
instruction is fetched again. If the breakpoint is still set, the processor
enters the debug state when it reaches the pipeline execute stage.

After the processor enters the halt mode debug state, it is important that
additional interrupts not affect the instructions executed. For this reason,
interrupts are disabled as soon as the processor enters the halt mode
debug state. However, the state of the I and F bits in the Program Status
Register (PSR) are not affected.

9.5.3 Watchpoints

Entry into the debug state following a watchpointed memory access is
imprecise, because of the nature of the pipeline.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Breakpoints, Watchpoints, and Debug Requests 9-25
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

To extend functionality of the EmbeddedICE-RT logic, you can build
external logic, such as external watchpoint comparators. The external
logic output must be applied to the DBGDEWPT input. This signal is
ORed with the internally generated Watchpoint signal before it is applied
to the ARM9E-S core control logic. The timing of the input makes it
unlikely that data-dependent external watchpoints can occur.

After a watchpointed access, the next instruction in the processor
pipeline is always allowed to complete execution. When this instruction
is a single-cycle data-processing instruction, entry into the debug state
is delayed for one cycle while the instruction completes. Figure 9.8
illustrates the timing of debug entry after a watchpointed LDR instruction.

Figure 9.8 Watchpoint Entry with Data Processing Instruction

Although instruction 5 enters the execute stage, it is not executed, and
there is no state update as a result of this instruction. When the
debugging session is complete, normal operation involves returning to
instruction 5 because it has not executed yet.

The instruction following the instruction that generated the watchpoint
might modify the Program Counter (PC). If this happens, you cannot

F1
D1
F2

E1
D2
Fldr

M1
E2

Dldr
FDp

W1
M2
Eldr
DDp
F5

W2
Mldr
EDp
D5

Wldr
MDp
E5

W5
Ddebug

WDp
M5 Edebug1Edebug2

CLK

InMREQ

INSTR[31:0]

DA[31:0]

WDATA[31:0]

RDATA[31:0]

DBGDEWPT

DBGACK

1 2 Dp 5 6 7 8

LDR

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-26 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

determine the instruction that caused the watchpoint. However, you can
always restart the processor. The timing diagram in Figure 9.9 shows
debug entry after a watchpoint when the next instruction is a branch.

After the processor enters the debug state, you can interrogate the
ARM9E-S processor core to determine its state. In the case of a
watchpoint, the PC contains a value that is five instructions after the
address of the next instruction to be executed. Therefore, upon entry into
the debug state, if the instruction SUB PC, PC, #20 is scanned in and
the processor restarts, execution flow returns to the next instruction in
the code sequence.

Figure 9.9 Watchpoint Entry with Branch

9.5.4 Watchpoints and Exceptions

If a watchpointed data access is also aborted, the watchpoint condition
is registered and the exception entry sequence is performed. Then the
processor enters the debug state. If there is an interrupt pending, the
ARM9E-S allows the exception entry sequence to occur and then enters
the debug state.

Fldr
Dldr
FB

Eldr
DB

Mldr
EB

Wldr
MB
FT

WB
DT ET Ddebug Edebug1Edebug2

CLK

InMREQ

INSTR[31:0]

DA[31:0]

WDATA[31:0]

RDATA[31:0]

DBGDEWPT

DBGACK

B T
LDR

X X T+4 T+8

T+C

IA[31:1]

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Determining the Core and System State 9-27
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

9.5.5 Debug Request

A debug request can take place through the EmbeddedICE-RT logic or
by asserting the EDBGRQ signal. The request is synchronized and
passed to the processor. A debug request takes priority over any pending
interrupt. Following synchronization, the processor core enters the debug
state after the instruction that is currently in the execute stage finishes
both the memory and write stages. While waiting for the instruction to
complete, the processor allows no more instructions to enter the execute
stage.

Note: If EDBGRQ is asserted while the processor is operating in
monitor mode, the processor enters the debug state as if
operating in halt mode.

9.5.6 Actions of the ARM9E-S in Debug State

When the ARM9E-S is in the debug state, both memory interfaces
indicate internal cycles. This ensures that the tightly coupled SRAM
within the ARM946E-S and the AHB interface are both quiescent,
allowing the rest of the AHB system to ignore the ARM9E-S and function
normally. Because the rest of the system continues operation, the
ARM9E-S ignores aborts and interrupts.

The nRESET signal must be held stable during debug. If the system
applies reset to the ARM946E-S (nRESET is driven LOW), the state of
the ARM9E-S changes without the debugger knowing about it.

9.6 Determining the Core and System State

When the ARM946E-S is in the debug state, you can examine the core
and system state by forcing Load and Store Multiple instructions into the
instruction pipeline.

Before you examine the core and system state, the debugger must check
the EmbeddedICE-RT Debug Status register (bit 4) and determine
whether the processor entered debug from the Thumb state or the ARM
state. When bit 4 is HIGH, it indicates the processor was in the Thumb
state. When bit 4 is LOW, the processor was in the ARM state.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-28 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

9.7 Real-Time Debug

The ARM9E-S processor contains logic that permits you to debug a
system without completely stopping the processor. This allows servicing
critical interrupt routines to continue while the debugger interrogates the
processor. Setting bit 4 of the Debug Control register enables the
ARM9E-S real-time debug features. When set, this bit configures the
EmbeddedICE-RT logic so a breakpoint or watchpoint causes the
processor to enter abort mode and take the Prefetch Abort or Data Abort
vectors, respectively.

The following restrictions apply when the ARM9E-S processor is
configured for real-time debugging:

• Breakpoints/watchpoints cannot be data-dependent. No support is
provided for the range and chain functionality.
Breakpoints/watchpoints are based only on:

– Instruction/data addresses

– External watchpoint conditioner (DBGEXTERN)

– User/privileged mode access (DnTRANS/InTRANS)

– Read/write access (watchpoints)

– Access size (breakpoints: ITBIT, watchpoints: DMAS[1:0]).

• Single-step hardware is not enabled.

• External breakpoints/watchpoints are not supported.

• Use the vector catching hardware, but you must not configure it to
catch the Prefetch or Data Abort exceptions.

• No support is provided for mixing halt mode/monitor mode debug
functionality. When the processor is configured for monitor mode,
asserting the external EDBGRQ signal or setting the internal
EDBGRQ bit causes unpredictable behavior.

If an abort is generated in monitor mode, the abort is recorded in the
CP14 Debug Status register (bit 0). For more information about this
register, including its format and bit definitions, see Section 3.4.2, “Debug
Status Register (C2)” in this manual.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM9E-S Clock Domains 9-29
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

Because the monitor mode debug does not put the processor into the
debug state, you must change the contents of the watchpoint registers
while external memory accesses are taking place. If the watchpoint
registers are updated during a memory access, all matches from the
affected watchpoint unit using the register are disabled for that update
cycle.

If false matches can occur during changes to the watchpoint registers
(due to old data in some registers and new data in others), then you must
do the following:

1. Disable the watchpoint unit using the Control register for that
watchpoint unit.

2. Change the other registers.

3. Re-enable the watchpoint unit by rewriting the Control register.

9.8 ARM9E-S Clock Domains

The ARM9E-S processor has a single clock, CLK, that is qualified by two
clock enables:

• SYSCLKEN controls access to the memory system

• DBGTCKEN controls debug operations

During normal operation, SYSCLKEN conditions CLK to clock the
processor. When the ARM946E-S is in the debug state, DBGTCKEN
conditions CLK to clock the processor.

9.9 Synchronizing Debug Clocks

The ARM Multi-ICE debug agent directly supports one or more cores
within an ASIC design.

External synchronization is required for the system debug and test clock
inputs to the ARM946E-S. To synchronize the ARM946E-S with off-chip
debug clocking, you must use a three-stage synchronizer. The off-chip
device (for example, Multi-ICE) issues a TCK signal, and waits for the
Returned TCK (RTCK) signal to come back. Synchronization is
maintained because the off-chip device does not progress to the next
TCK until after RTCK is received.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

9-30 Debug Interface
Copyright © 2000-2001 by LSI Logic Corporation. All rights reserved.

Figure 9.10 shows the clock synchronization logic.

Figure 9.10 Clock Synchronization Logic

DBGTMS

DBGTDI

Multi-ICE
Interface

Pads

DBGnTRST

DBGTDO

DBGTCKEN

TDO

RTCK

TCK

CLK

TMS

D Q

TCK Synchronizer

D Q D Q

D Q

CLK

CLK

D Q

CLK

ARM946E-S

Input sample and hold

TDI

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual 10-1
Copyright © 2000 by LSI Logic Corporation. All rights reserved.

Chapter 10
ETM Interface

This chapter describes the ARM946E-S Embedded Trace Macrocell
(ETM) interface. It contains the following sections:

• Section 10.1, “About the ETM”

• Section 10.2, “ETM Interface”

• Section 10.3, “Enabling the ETM Interface”

10.1 About the ETM

The ARM946E-S supports the connection of an optional external
Embedded Trace Macrocell (ETM) to provide real-time tracing of
ARM946E-S instructions and data in an embedded system.

The ETM consists of a trace port and triggering facilities.

10.1.1 Trace Port

The ETM compresses the trace information and exports it through the
Trace port. An external Trace Port Analyzer (TPA) captures the trace
information.

A trace protocol has been developed to provide a real-time trace
capability for processor cores that are deeply embedded in much larger
ASIC designs. As the ASIC typically includes significant amounts of
on-chip memory, you cannot determine how the processor core is
operating simply by observing the pins of the ASIC. A trace port is
required to confirm the performance of the processor while in operation.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

10-2 ETM Interface
Copyright © 2000 by LSI Logic Corporation. All rights reserved.

10.1.2 Triggering Facilities

An extensible specification exists that allows you to specify the exact set
of trigger resources required for a particular application. Resources
include address and data comparators, counters, and sequencers. For
more information, see the Embedded Trace Macrocell (Rev 1)
Specification available from ARM Limited.

10.2 ETM Interface

The ETM interface is primarily one way. To provide code tracing, the ETM
must monitor various processor inputs and outputs. The required inputs
and outputs are collected and driven out from the ARM946E-S as the
ETM interface.

ETM interface outputs are pipelined by a single clock cycle to provide
early output timing and to isolate any ETM input load from the critical
ARM946E-S signals. The latency of the pipelined outputs does not affect
ETM trace behavior, because all outputs are delayed by the same
amount.

Figure 10.1 shows the ARM946E-S ETM interface.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Enabling the ETM Interface 10-3
Copyright © 2000 by LSI Logic Corporation. All rights reserved.

Figure 10.1 ARM946E-S ETM Interface

10.3 Enabling the ETM Interface

The only input to the ETM interface is an enable signal that allows the
required processor I/O to be driven to/from the ARM946E-S. ETMEN is
the ETM interface enable signal. When ETMEN is HIGH, the ETM
interface is enabled and the outputs are driven so that an external ETM
can begin code tracing.

When the ETMEN input is driven LOW, the ETM interface outputs are
held at their last value before the interface is disabled. At reset, all ETM
interface outputs are reset LOW.

ETM

ETM Interface Registers

ETMEN

En
CLK

ARM946E-S

ARM9E-S
To/From

ARM946E-S
Logic

nRESET

To/From
ARM946E-S
Logic

ETM Interface Signals (see notes 1 and 2)

1. For a list of ETM signals and definitions, see Section 2.12, “ETM Interface Signals.”
2. For timing information, see Section Figure A.10, “ETM Interface Timing,”

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

10-4 ETM Interface
Copyright © 2000 by LSI Logic Corporation. All rights reserved.

The ETM normally drives the ETMEN input. It is driven HIGH when you
have programmed the ETM using its TAP controller.

Note: If you do not use an ETM in an embedded ARM946E-S
design, tie the ETMEN input LOW to save power.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual 11-1
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Chapter 11
Test Support

This chapter describes the test methodology used for the ARM946E-S
synthesized logic and tightly coupled SRAM. It contains the following
sections:

• Section 11.1, “About the ARM946E-S Test Methodology”

• Section 11.2, “Scan Insertion and ATPG”

• Section 11.3, “BIST of Memory Arrays”

11.1 About the ARM946E-S Test Methodology

To achieve a high level of fault coverage, you can use scan insertion and
Automatic Test Pattern Generation (ATPG) techniques on the ARM9E-S
processor core and ARM946E-S control logic as part of the synthesis
flow. You can use BIST to provide high fault coverage of the compiled
SRAM.

11.2 Scan Insertion and ATPG

Scan insertion requires that all register elements be replaced by
scannable versions that are then connected into a number of large scan
chains. These scan chains are used to set up data patterns on the
combinatorial logic between the registers and to capture the logic
outputs. The logic outputs are then scanned out while the next data
pattern is scanned in.

After scan insertion, you can use ATPG tools to create the necessary
scan patterns to test the logic. Using this technique, you can achieve
very high fault coverage for the standard cell combinatorial logic,
typically, in the 95–99% range.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

11-2 Test Support
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Scan insertion does affect the area and the performance of the
synthesized design. This affect is due to the larger scan register
elements and the serial routing between them. However, to minimize the
impact, scan insertion is performed early in the synthesis cycle and the
design is reoptimized after the scan elements are in place.

11.3 BIST of Memory Arrays

BIST is performed at manufacturing test. There is no software interface
that will run the memory BIST. The BIST controller is accessible through
the JTAG interface.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual A-1
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Appendix A
AC Parameters

This appendix lists the AC timing parameters for the ARM946E-S. It
contains the following sections:

• Section A.1, “Timing Diagrams”

• Section A.2, “AC Timing Parameter Definitions”

A.1 Timing Diagrams

The timing diagrams in this section are:

• Clock, Reset, and AHB Enable Timing

• AHB Bus Request and Grant Related Timing

• AHB Bus Master Timing

• Coprocessor Interface Timing

• Debug Interface Timing

• JTAG Interface Timing

• DBGSDOUT to DBGTDO Timing

• Exception and Configuration Timing

• INTEST Wrapper Timing

• ETM Interface Timing

Refer to Table A.1 on page A-10 for definitions of the parameters shown
in the timing diagrams.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

A-2 AC Parameters
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Clock, reset and AHB enable timing parameters are shown in Figure A.1.

Figure A.1 Clock, Reset, and AHB Enable Timing

AHB bus request and grant related timing parameters are shown in
Figure A.2.

Figure A.2 AHB Bus Request and Grant Related Timing

CLK

HCLKEN

HRESETn

Tcyc

Tishen

Tihhen

Tisrst
Tihrst

Tohreq

Tohlck

Tisgnt

Tihgnt

Tovreq

Tovlck

CLK

HBUSREQ

HLOCK

HGRANT

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Timing Diagrams A-3
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

AHB bus master timing parameters are shown in Figure A.3.

Figure A.3 AHB Bus Master Timing

Tovtr Tohtr

Tova Toha

TohctlTovctl

Tovwd Tohwd

Tihrdy

Tihrsp

Tihrd

Tisrdy

OKAY

Tisrsp

Read Data
(A)

Tisrd

OKAY

Write Data (A)

Control

A

NONSEQ

CLK

HTRANS[1:0]

HADDR[31:0]

HWRITE
HSIZE[2:0]

HBURST[2:0]
HPROT[3:0]

HWDATA[310]

HREADY

HRESP

HRDATA[31:0]

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

A-4 AC Parameters
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Coprocessor interface timing parameters are shown in Figure A.4.

Figure A.4 Coprocessor Interface Timing

Tovcpen

Tovcpd

Tohcpen

Tohcpd

Tovcpctl Tohcpctl

TohcphsTiscphs

Tohcplc

Tohcpps

Tovcplc

Tovcpps

Tovcprd Tohcprd

TihcpwrTiscpwr

STC/MRC
Data

LDC/MCR Data

WAIT/GO
LAST/ABSENT

CLK

CPCLKEN

CPINSTR[31:0]

nCPMREQ
nCPTRANS

CPTBIT

CHSDE
CHSEX

CPLATECANCEL

CPPASS

CPDOUT[31:0]

CPDIN[31:0]

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Timing Diagrams A-5
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Debug interface timing parameters are shown in Figure A.5.

Figure A.5 Debug Interface Timing

Tovdbgack

Tovdbgrng

Tovdbgrqi

Tovdbgstat

Tovdbgcomm

Tohdbgack

Tohdbgrng

Tohdbgrqi

Tohdbgstat

Tohdbgcomm

Tihdbgin

Tihiebkpt

Tihdewpt

Tisdbgin

Tisiebkpt

Tisdewpt

CLK

DBGACK

DBGRNG[1:0]

DBGRQI

DBGINSTREXEC

COMMRX
COMMTX

DBGEN
EDBGRQ

DBGEXT[1:0]

DBGIEBKPT

DBGDEWPT

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

A-6 AC Parameters
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

JTAG interface timing parameters are shown in Figure A.6.

Figure A.6 JTAG Interface Timing

Tovdbgsm

Tovtdoen

Tovsdin

Tovtdo

Tisntrst

Tohdbgsm

Tohtdoen

Tohsdin

Tohtdo

Tihtdi

Tihtcken

Tihtapid

Tistdi

Tistcken

Tistapid

CLK

DBGIR[3:0]

DBGnTDOEN

DBGSDIN

DBGTO

DBGnTRST

DBGTDI
DBGTMS

DBGTCLKEN

TAPID[31:0]

DBGSCREG[4:0]
DBGTAPSM[3:0]

Tihntrst

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Timing Diagrams A-7
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Figure A.7 shows a combinational path timing parameter that exists from
the DBGSDOUT input to the DBGTDO output.

Figure A.7 DBGSDOUT to DBGTDO Timing

Exception and configuration timing parameters are shown in Figure A.8.

Figure A.8 Exception and Configuration Timing

DBGSDOUT

DBGTDO

Ttdsh
Ttdsd

CLK

INITRAM

nFIQ

Tisint

Tovbigend

nIRQ

VINITHI

BIGENDOUT

Tohbigend

Tinint

Tishivecs
Tihhivecs

Tisinitram
Tihinitram

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

A-8 AC Parameters
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

The INTEST wrapper timing parameters are shown in Figure A.9.

Figure A.9 INTEST Wrapper Timing

Tovso Tohso

TihsiTissi

TihscanenTisscanen

TihtestenTistesten

CLK

SO

SI

SCANEN

TESTEN

TihserialenTisserialen

SERIALEN

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Timing Diagrams A-9
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

The ETM interface timing parameters are shown in Figure A.10.

Figure A.10 ETM Interface Timing

Tovetminst

Tovetmictl

Tovetmstat

Tohetminst

Tohetmictl

Tohetmstat

Tohetmdata

Tohetmnwait

Tohetmdctl

Tohetmcfg

Tohetmcpif

Tohetmdbg

TihetmenTisetmen

Tovetmdbg

Tovetmcpif

Tovetmcfg

Tovetmdctl

Tovetmnwait

Tovetmdata

CLK

ETMIA[31:1]
ETMID31To24[31:24]

ETMID15To8[15:8]

ETMInMREQ
ETMISEQ
ETMITBIT

ETMIABORT

ETMINSTREXEC

ETMDA[31:0]
ETMRDATA[31:0]
ETMWDATA[31:0]

ETMDMAS[1:0]

ETMnWAIT

ETMDMORE
ETMDnMREQ

ETMDnRW
ETMDABORT

ETMBIGEND
ETMHIVECS

ETMCHSD[1:0]
ETMCHSE[1:0]

ETMPASS
ETMLATECANCEL

ETMDBGACK
ETMRNGOUT[1:0]

ETMEN

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

A-10 AC Parameters
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

A.2 AC Timing Parameter Definitions

Table A.1 shows target AC parameters. All values are expressed as
percentages of the CLK period at maximum operating frequency.

Note: The values quoted are relative to the rising clock edge after
the clock skew for internal buffering has been added. Inputs
given a 0% hold value therefore require a positive hold
relative to the top-level clock input. The amount of hold
required is equivalent to the internal clock skew.

Table A.1 Timing Parameter Definitions

Symbol Parameter Min Max

Tcyc CLK cycle time 100% –

Tishen HCLKEN input setup to rising CLK 85% –

Tihhen HCLKEN input hold from rising CLK – 0%

Tisrst HRESETn deassertion input setup to rising CLK 90% –

Tihrst HRESETn deassertion input hold from rising CLK – 0%

Tovreq Rising CLK to HBUSREQ valid – 30%

Tohreq HBUSREQ hold time from rising CLK >0% –

Tovlck Rising CLK to HLOCK valid – 30%

Tohlck HLOCK hold time from rising CLK >0% –

Tisgnt HGRANT input setup to rising CLK 40% –

Tihgnt HGRANT input hold from rising CLK – 0%

Tovtr Rising CLK to HTRANS[1:0] valid – 30%

Tohtr HTRANS[1:0] hold time from rising CLK >0% –

Tova Rising CLK to HADDR[31:0] valid – 30%

Toha HADDR[31:0] hold time from rising CLK >0% –

Tovctl Rising CLK to AHB control signals valid – 30%

Tohctl AHB control signals hold time from rising CLK >0% –

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

AC Timing Parameter Definitions A-11
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Tovwd Rising CLK to HWDATA[31:0] valid – 30%

Tohwd HWDATA[31:0] hold time from rising CLK >0% –

Tisrdy HREADY input setup to rising CLK 75% –

Tihrdy HREADY input hold from rising CLK – 0%

Tisrsp HRESP[1:0] input setup to rising CLK 50% –

Tihrsp HRESP[1:0] input hold from rising CLK – 0%

Tisrd HRDATA[31:0] input setup to rising CLK 40% –

Tihrd HRDATA[31:0] input hold from rising CLK – 0%

Tovcpen Rising CLK to CPCLKEN valid – 30%

Tohcpen CPCLKEN hold time from rising CLK >0% –

Tovcpid Rising CLK to CPINSTR[31:0] valid – 30%

Tohcpid CPINSTR[31:0] hold time from rising CLK >0% –

Tovcpctl Rising CLK to transaction control valid – 30%

Tohcpctl Transaction control hold time from rising CLK >0% –

Tiscphs Coprocessor handshake input setup to rising CLK 50% –

Tihcphs Coprocessor handshake input hold from rising CLK – 0%

Tovcplc Rising CLK to CPLATECANCEL valid – 30%

Tohcplc CPLATECANCEL hold time from rising CLK >0% –

Tovcpps Rising CLK to CPPASS valid – 30%

Tohcpps CPPASS hold time from rising CLK >0% –

Tovcprd Rising CLK to CPDOUT[31:0] valid – 30%

Tohcprd CPDOUT[31:0] hold time from rising CLK >0% –

Tiscpwr CPDIN[31:0] input setup to rising CLK 40% –

Tihcpwr CPDIN[31:0] input hold from rising CLK – 0%

Tovdbgack Rising CLK to DBGACK valid – 60%

Table A.1 Timing Parameter Definitions (Cont.)

Symbol Parameter Min Max

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

A-12 AC Parameters
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Tohdbgack DBGACK hold time from rising CLK >0% –

Tovdbgrng Rising CLK to DBGRNG[1:0] valid – 60%

Tohdbgrng DBGRNG[1:0] hold time from rising CLK >0% –

Tovdbgrqi Rising CLK to DBGRQI valid – 45%

Tohdbgrqi DBGRQI hold time from rising CLK >0% –

Tovdbgstat Rising CLK to DBGINSTREXEC valid – 30%

Tohdbgstat DBGINSTREXEC hold time from rising CLK >0% –

Tovdbgcomm Rising CLK to comms channel outputs valid – 30%

Tohdbgcomm Comms channel outputs hold time from rising CLK >0% –

Tisdbgin Debug inputs input setup to rising CLK 30% –

Tihdbgin Debug inputs input hold from rising CLK – 0%

Tisiebkpt DBGIEBKPT input setup to rising CLK 20% –

Tihiebkpt DBGIEBKPT input hold from rising CLK – 0%

Tisdewpt DBGDEWPT input setup to rising CLK 20% –

Tihdewpt DBGDEWPT input hold from rising CLK – 0%

Tovdbgsm Rising CLK to debug state valid – 30%

Tohdbgsm Debug state hold time from rising CLK >0% –

Tovtdoen Rising CLK to DBGnTDOEN valid – 40%

Tohtdoen DBGnTDOEN hold time from rising CLK >0% –

Tovsdin Rising CLK to DBGSDIN valid – 20%

Tohsdin DBGSDIN hold time from rising CLK >0% –

Tovtdo Rising CLK to DBGTDO valid – 65%

Tohtdo DBGTDO hold time from rising CLK >0% –

Tisntrst DBGnTRST deasserted input setup to rising CLK 35% –

Tihntrst DBGnTRST input hold from rising CLK – 0%

Table A.1 Timing Parameter Definitions (Cont.)

Symbol Parameter Min Max

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

AC Timing Parameter Definitions A-13
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Tistdi Tap state control input setup to rising CLK 25% –

Tihtdi Tap state control input hold from rising CLK – 0%

Tistcken DBGTCKEN input setup to rising CLK 50% –

Tihtcken DBGTCKEN input hold from rising CLK – 0%

Tistapid TAPID[31:0] input setup to rising CLK 20% –

Tihtapid TAPID[31:0] input hold from rising CLK – 0%

Tdsd DBGTDO delay from DBGSDOUTBS changing – 30%

Tdsh DBGTDO hold time from DBGSDOUTBS changing >0% –

Tovbigend Rising CLK to BIGENDOUT valid – 30%

Tohbigend BIGENDOUT hold time from rising CLK >0% –

Tisint Interrupt input setup to rising CLK 15% –

Tihint Interrupt input hold from rising CLK – 0%

Tishivecs VINITHI input setup to rising CLK 95% –

Tihhivecs VINITHI input hold from rising CLK – 0%

Tisinitram INITRAM input setup to rising CLK 95% –

Tihinitram INITRAM input hold from rising CLK – 0%

Tovso Rising CLK to SO valid – 30%

Tohso SO hold time from rising CLK >0% –

Tissi SI input setup to rising CLK 95% –

Tihsi SI input hold from rising CLK – 0%

Tisscanen SCANEN input setup to rising CLK 95% –

Tihscanen SCANEN input hold from rising CLK – 0%

Tisserialen SERIALEN input setup to rising CLK 95% –

Tihserialen SERIALEN input hold from rising CLK – 0%

Tovetminst Rising CLK to ETM instruction interface valid – 30%

Table A.1 Timing Parameter Definitions (Cont.)

Symbol Parameter Min Max

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

A-14 AC Parameters
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Note: The VINITHI pin is specified as 95% of the cycle because
it is for input configuration during reset and can be
considered static.

Tohetminst ETM instruction interface hold time from rising CLK >0% –

Tovetmictl Rising CLK to ETM instruction control valid – 30%

Tohetmictl ETM instruction control hold time from rising CLK >0% –

Tovetmstat Rising CLK to ETMINSTREXEC valid – 30%

Tohetmstat ETMINSTREXEC hold time from rising CLK >0% –

Tovetmdata Rising CLK to ETM data interface valid – 30%

Tohetmdata ETM data interface hold time from rising CLK >0% –

Tovetmnwait Rising CLK to ETMnWAIT valid – 30%

Tohetmnwait ETMnWAIT hold time from rising CLK >0% –

Tovetmdctl Rising CLK to ETM data control valid – 30%

Tohetmdctl ETM data control hold time from rising CLK >0% –

Tovetmcfg Rising CLK to ETM configuration valid – 30%

Tohetmcfg ETM configuration hold time from rising CLK >0% –

Tovetmcpif Rising CLK to ETM coprocessor signals valid – 30%

Tohetmcpif ETM coprocessor signals hold time from rising CLK >0% –

Tovetmdbg Rising CLK to ETM debug signals valid – 30%

Tohetmdbg ETM debug signals hold time from rising CLK >0% –

Tisetmen ETMEN input setup to rising CLK 50% –

Tihetmen ETMEN input hold from rising CLK – 0%

Table A.1 Timing Parameter Definitions (Cont.)

Symbol Parameter Min Max

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual IX-1
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Index

A

AC timing parameters 11-10
Access Address for a 4 Kbyte Cache 4-3
Access permission registers 3-15
Address format 3-24
AHB

bus master interface 7-2
clocking 7-7
interface unit 1-5
signals 2-5
transfers

clock enable 7-7
ARM946E-S 1-1

block diagram 1-3
transfer 7-3

ARM9E-S 1-1
core programmer’s model 3-1

ATPG 11-1
Scan Control signals 2-30

Automatic test pattern generator 11-1

B

Background regions 5-4
Base address, region 5-2
Base setting, example 3-21
BIST Memory arrays 11-2
Block diagram 1-3
Breakpoints 9-23

exceptions 9-24
instruction boundary 9-24
prefetch abort 9-24

Burst
access 7-5
crossing 1 Kbyte boundary 7-6
size 7-3

Bus interface unit 7-1
Bus master interface, AHB 7-2

Busy-waiting 8-10

C

Cache
architecture 4-1
configuration registers 3-13
debug access 9-17
debug index register 3-31
lockdown 4-11
lockdown register 3-25
operations register 3-22
size 4-4
type register 3-6

Cd and Bd bits cache stores 4-9
Cd bit 4-8
CDP instructions 8-9
CLK to HCLK slew 7-8
Clock

AHB 7-7
domains 9-29
enable AHB transfers 7-7
interface signals 2-5
tree insertion 7-8

hierarchical 7-9
Control register 3-11, 6-2
Coprocessor

clocking 8-2
external 8-6
handshake encoding 8-6
handshake signals 8-5
instructions 8-2
interface 8-1
interface signals 2-20
states 8-5

Core state determining 9-27
CP14 registers 3-34
CP15 6-2

register map 3-3

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

IX-2 Index
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

D

Data Cache signals 2-15
Data RAM signals 2-10
Data write modes 7-11
D-Cache 1-5, 4-7

Bd and Cd bits 4-7
clean and flush 4-9
disabling 4-7
enabling 4-7
lockdown 4-12
operation 4-7
validity 4-9

Debug
clocks 9-29
comms channel 9-21
comms channel registers 9-21
comms channel status register 3-34
communications channel 9-20
host 9-2
interface 9-1
logic 9-3
message transfer 9-21
Multi-ICE 9-29
operations 9-4
pullup resistors 9-9
real-time 9-28
request 9-27
serial interface 9-5
signals 2-22
status register 3-35
systems 9-1
target 9-3

Debug state
actions of ARM9E-S 9-27
breakpoints 9-23
watchpoints 9-24

Determining
core state 9-27
system state 9-27

Dirty bits 4-4
Disabling D-SRAM 6-4
Disabling EmbeddedICE-RT 9-20
D-SRAM

disabling 6-4
enabling 6-4
load mode 6-4

E

EmbeddedICE-RT
debug 9-18
disabling 9-20

Enabling D-SRAM 6-4
ETM interface 10-1

enabling 10-3
signals 2-25

External coprocessor 8-1, 8-6

F

Flushing
entire I-Cache 4-6
single I-Cache line 4-6

H

Harvard bus architecture 1-4

I

I-Cache 1-5, 4-5
disabling 4-5
enabling 4-5
flushing 4-6
lockdown 4-13
operation 4-5
validity 4-6

ID code register 3-5
Index field 3-23, 4-4
Index format 3-23
Instruction Cache signals 2-11
Instruction RAM signals 2-8
Instruction/data access permission (I/DAP) regis-

ter (extended) 3-16
Instruction/data access permission (I/DAP) regis-

ter (standard) 3-18
instructions

CDP 8-9
coprocessor 8-2
LDC/STS 8-3
MCR interlocked 8-8
privileged 8-10

Interlocked MCR 8-8
Interrupts busy-waiting 8-10
I-SRAM

disabling 6-3
enabling 6-2
load mode 6-3

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual IX-3
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

J

JTAG signals 2-24

L

LDC/STC instructions 8-3
Line fetch

back to back 7-4
transfer 7-3

Load and Store multiples 4-9
Load mode

D-SRAM 6-4
I-SRAM 6-3

Lockdown
cache 4-11
D-Cache 4-12
example subroutine 4-13
I-Cache 4-13

M

MCR
cycles 8-7
instruction format 3-4
interlocked 8-8

Memory regions 5-2
Miscellaneous signals 2-25
MRC

cycles 8-7
instruction format 3-4

Multi-ICE 9-29

N

Noncached Thumb instruction fetch 7-6

O

Overlapping regions 5-3

P

Partition attributes 5-3
Privileged instructions 8-10
Protection region/base size register 3-19
Protection unit 1-5

diagram 5-1
enabling 5-2

Protocol converter 9-2

R

Real-time debug 9-28
Region

background 5-4
base address 5-2
memory 5-2
overlapping 5-3
size 5-3

Register
7 Rd format 4-10
access permission 3-15
base size 3-19
cache configuration 3-13
cache debug index 3-31
cache lockdown 3-25
cache operations 3-22
Cache type 3-6
control 3-11, 6-2
debug comms channel 9-21
debug comms channel status 3-34
debug status 3-35
ID code 3-5
instruction/data access permission (extended)

3-16
instruction/data access permission (standard)

3-18
protection region 3-19
serial 9-5
test state 3-29
tightly-coupled memory region 3-26
tightly-coupled memory size 3-9
trace process identifier 3-29
write buffer control 3-14

Register map, CP15 3-3

S

Scan chain 15 mapping 9-15
Scan chains 9-12
Scan insertion 11-1
Serial registers 9-5
Set format 3-23
Signal descriptions 2-1
Signal properties and requirements 2-1
Signals

AHB 2-5
ATPG scan control 2-30
clock interface 2-5

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

IX-4 Index
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

coprocessor interface 2-20
Data Cache 2-15
Data RAM 2-10
debug 2-22
ETM interface 2-25
Instruction RAM 2-8
Insturction Cache 2-11
JTAG 2-24
miscellaneous 2-25

Size, region 5-3
Slew 7-8
SRAM

BIST 11-2
requirements 6-1

System state, determining 9-27

T

TAG field 4-4
TAP controller 9-6
TAP instructions

BYPASS 9-11
EXTEST 9-10
IDCODE 9-11
INTEST 9-10
RESTART 9-12
SAMPLE/PRELOAD 9-12
SCAN_N 9-10

Test methodology 11-1
Test state register 3-29
Thumb instruction fetch noncached 7-6
Tightly-coupled memory

region register 3-26
size register 3-9

Timing
diagrams 11-1
parameters 11-10

Trace port 10-1
Trace process indentifier register 3-29
Transfer 7-3

line fetch 7-3
uncached 7-5

U

Uncached transfers 7-5

W

Watchpoints 9-24
exceptions 9-26
timing 9-25

Write buffer 7-1, 7-10
control register 3-14
disabling 7-12
enabling 7-12
operation 7-11

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

ARM946E-S Microprocessor Core with Cache Technical Manual
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Customer Feedback

We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the number
shown.

If appropriate, please also fax copies of any marked-up pages from this
document.

Important: Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.

Thank you for your help in improving the quality of our documents.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Customer Feedback
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

Reader’s Comments

Fax your comments to: LSI Logic Corporation
Technical Publications
M/S E-198
Fax: 408.433.4333

Please tell us how you rate this document: ARM946E-S Microprocessor
Core with Cache Technical Manual. Place a check mark in the
appropriate blank for each category.

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you
directly for clarification or additional information.

Excellent Good Average Fair Poor

Completeness of information ____ ____ ____ ____ ____
Clarity of information ____ ____ ____ ____ ____
Ease of finding information ____ ____ ____ ____ ____
Technical content ____ ____ ____ ____ ____
Usefulness of examples and
illustrations

____ ____ ____ ____ ____

Overall manual ____ ____ ____ ____ ____

Name Date

Telephone

Title

Company Name

Street

City, State, Zip

Department Mail Stop

Fax

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Customer Feedback
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Customer Feedback
Copyright © 2000–2001 by LSI Logic Corporation. All rights reserved.

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

U.S. Distributors
by State

A. E. Avnet Electronics
http://www.hh.avnet.com
B. M. Bell Microproducts,

Inc. (for HAB’s)
http://www.bellmicro.com
I. E. Insight Electronics
http://www.insight-electronics.com
W. E. Wyle Electronics
http://www.wyle.com

Alabama
Daphne
I. E. Tel: 334.626.6190
Huntsville
A. E. Tel: 256.837.8700
B. M. Tel: 256.705.3559
I. E. Tel: 256.830.1222
W. E. Tel: 800.964.9953

Alaska
A. E. Tel: 800.332.8638

Arizona
Phoenix
A. E. Tel: 480.736.7000
B. M. Tel: 602.267.9551
W. E. Tel: 800.528.4040
Tempe
I. E. Tel: 480.829.1800
Tucson
A. E. Tel: 520.742.0515

Arkansas
W. E. Tel: 972.235.9953

California
Agoura Hills
B. M. Tel: 818.865.0266
Granite Bay
B. M. Tel: 916.523.7047
Irvine
A. E. Tel: 949.789.4100
B. M. Tel: 949.470.2900
I. E. Tel: 949.727.3291
W. E. Tel: 800.626.9953
Los Angeles
A. E. Tel: 818.594.0404
W. E. Tel: 800.288.9953
Sacramento
A. E. Tel: 916.632.4500
W. E. Tel: 800.627.9953
San Diego
A. E. Tel: 858.385.7500
B. M. Tel: 858.597.3010
I. E. Tel: 800.677.6011
W. E. Tel: 800.829.9953
San Jose
A. E. Tel: 408.435.3500
B. M. Tel: 408.436.0881
I. E. Tel: 408.952.7000
Santa Clara
W. E. Tel: 800.866.9953
Woodland Hills
A. E. Tel: 818.594.0404
Westlake Village
I. E. Tel: 818.707.2101

Colorado
Denver
A. E. Tel: 303.790.1662
B. M. Tel: 303.846.3065
W. E. Tel: 800.933.9953
Englewood
I. E. Tel: 303.649.1800
Idaho Springs
B. M. Tel: 303.567.0703

Connecticut
Cheshire
A. E. Tel: 203.271.5700
I. E. Tel: 203.272.5843
Wallingford
W. E. Tel: 800.605.9953

Delaware
North/South
A. E. Tel: 800.526.4812

Tel: 800.638.5988
B. M. Tel: 302.328.8968
W. E. Tel: 856.439.9110

Florida
Altamonte Springs
B. M. Tel: 407.682.1199
I. E. Tel: 407.834.6310
Boca Raton
I. E. Tel: 561.997.2540
Bonita Springs
B. M. Tel: 941.498.6011
Clearwater
I. E. Tel: 727.524.8850
Fort Lauderdale
A. E. Tel: 954.484.5482
W. E. Tel: 800.568.9953
Miami
B. M. Tel: 305.477.6406
Orlando
A. E. Tel: 407.657.3300
W. E. Tel: 407.740.7450
Tampa
W. E. Tel: 800.395.9953
St. Petersburg
A. E. Tel: 727.507.5000

Georgia
Atlanta
A. E. Tel: 770.623.4400
B. M. Tel: 770.980.4922
W. E. Tel: 800.876.9953
Duluth
I. E. Tel: 678.584.0812

Hawaii
A. E. Tel: 800.851.2282

Idaho
A. E. Tel: 801.365.3800
W. E. Tel: 801.974.9953

Illinois
North/South
A. E. Tel: 847.797.7300

Tel: 314.291.5350
Chicago
B. M. Tel: 847.413.8530
W. E. Tel: 800.853.9953
Schaumburg
I. E. Tel: 847.885.9700

Indiana
Fort Wayne
I. E. Tel: 219.436.4250
W. E. Tel: 888.358.9953
Indianapolis
A. E. Tel: 317.575.3500

Iowa
W. E. Tel: 612.853.2280
Cedar Rapids
A. E. Tel: 319.393.0033

Kansas
W. E. Tel: 303.457.9953
Kansas City
A. E. Tel: 913.663.7900
Lenexa
I. E. Tel: 913.492.0408

Kentucky
W. E. Tel: 937.436.9953
Central/Northern/ Western
A. E. Tel: 800.984.9503

Tel: 800.767.0329
Tel: 800.829.0146

Louisiana
W. E. Tel: 713.854.9953
North/South
A. E. Tel: 800.231.0253

Tel: 800.231.5775

Maine
A. E. Tel: 800.272.9255
W. E. Tel: 781.271.9953

Maryland
Baltimore
A. E. Tel: 410.720.3400
W. E. Tel: 800.863.9953
Columbia
B. M. Tel: 800.673.7461
I. E. Tel: 410.381.3131

Massachusetts
Boston
A. E. Tel: 978.532.9808
W. E. Tel: 800.444.9953
Burlington
I. E. Tel: 781.270.9400
Marlborough
B. M. Tel: 800.673.7459
Woburn
B. M. Tel: 800.552.4305

Michigan
Brighton
I. E. Tel: 810.229.7710
Detroit
A. E. Tel: 734.416.5800
W. E. Tel: 888.318.9953
Clarkston
B. M. Tel: 877.922.9363

Minnesota
Champlin
B. M. Tel: 800.557.2566
Eden Prairie
B. M. Tel: 800.255.1469
Minneapolis
A. E. Tel: 612.346.3000
W. E. Tel: 800.860.9953
St. Louis Park
I. E. Tel: 612.525.9999

Mississippi
A. E. Tel: 800.633.2918
W. E. Tel: 256.830.1119

Missouri
W. E. Tel: 630.620.0969
St. Louis
A. E. Tel: 314.291.5350
I. E. Tel: 314.872.2182

Montana
A. E. Tel: 800.526.1741
W. E. Tel: 801.974.9953

Nebraska
A. E. Tel: 800.332.4375
W. E. Tel: 303.457.9953

Nevada
Las Vegas
A. E. Tel: 800.528.8471
W. E. Tel: 702.765.7117

New Hampshire
A. E. Tel: 800.272.9255
W. E. Tel: 781.271.9953

New Jersey
North/South
A. E. Tel: 201.515.1641

Tel: 609.222.6400
Mt. Laurel
I. E. Tel: 856.222.9566
Pine Brook
B. M. Tel: 973.244.9668
W. E. Tel: 800.862.9953
Parsippany
I. E. Tel: 973.299.4425
Wayne
W. E. Tel: 973.237.9010

New Mexico
W. E. Tel: 480.804.7000
Albuquerque
A. E. Tel: 505.293.5119

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

U.S. Distributors
by State
(Continued)

New York
Hauppauge
I. E. Tel: 516.761.0960
Long Island
A. E. Tel: 516.434.7400
W. E. Tel: 800.861.9953
Rochester
A. E. Tel: 716.475.9130
I. E. Tel: 716.242.7790
W. E. Tel: 800.319.9953
Smithtown
B. M. Tel: 800.543.2008
Syracuse
A. E. Tel: 315.449.4927

North Carolina
Raleigh
A. E. Tel: 919.859.9159
I. E. Tel: 919.873.9922
W. E. Tel: 800.560.9953

North Dakota
A. E. Tel: 800.829.0116
W. E. Tel: 612.853.2280

Ohio
Cleveland
A. E. Tel: 216.498.1100
W. E. Tel: 800.763.9953
Dayton
A. E. Tel: 614.888.3313
I. E. Tel: 937.253.7501
W. E. Tel: 800.575.9953
Strongsville
B. M. Tel: 440.238.0404
Valley View
I. E. Tel: 216.520.4333

Oklahoma
W. E. Tel: 972.235.9953
Tulsa
A. E. Tel: 918.459.6000
I. E. Tel: 918.665.4664

Oregon
Beaverton
B. M. Tel: 503.524.1075
I. E. Tel: 503.644.3300
Portland
A. E. Tel: 503.526.6200
W. E. Tel: 800.879.9953

Pennsylvania
Mercer
I. E. Tel: 412.662.2707
Philadelphia
A. E. Tel: 800.526.4812
B. M. Tel: 877.351.2355
W. E. Tel: 800.871.9953
Pittsburgh
A. E. Tel: 412.281.4150
W. E. Tel: 440.248.9996

Rhode Island
A. E. 800.272.9255
W. E. Tel: 781.271.9953

South Carolina
A. E. Tel: 919.872.0712
W. E. Tel: 919.469.1502

South Dakota
A. E. Tel: 800.829.0116
W. E. Tel: 612.853.2280

Tennessee
W. E. Tel: 256.830.1119
East/West
A. E. Tel: 800.241.8182

Tel: 800.633.2918

Texas
Arlington
B. M. Tel: 817.417.5993
Austin
A. E. Tel: 512.219.3700
B. M. Tel: 512.258.0725
I. E. Tel: 512.719.3090
W. E. Tel: 800.365.9953
Dallas
A. E. Tel: 214.553.4300
B. M. Tel: 972.783.4191
W. E. Tel: 800.955.9953
El Paso
A. E. Tel: 800.526.9238
Houston
A. E. Tel: 713.781.6100
B. M. Tel: 713.917.0663
W. E. Tel: 800.888.9953
Richardson
I. E. Tel: 972.783.0800
Rio Grande Valley
A. E. Tel: 210.412.2047
Stafford
I. E. Tel: 281.277.8200

Utah
Centerville
B. M. Tel: 801.295.3900
Murray
I. E. Tel: 801.288.9001
Salt Lake City
A. E. Tel: 801.365.3800
W. E. Tel: 800.477.9953

Vermont
A. E. Tel: 800.272.9255
W. E. Tel: 716.334.5970

Virginia
A. E. Tel: 800.638.5988
W. E. Tel: 301.604.8488
Haymarket
B. M. Tel: 703.754.3399
Springfield
B. M. Tel: 703.644.9045

Washington
Kirkland
I. E. Tel: 425.820.8100
Maple Valley
B. M. Tel: 206.223.0080
Seattle
A. E. Tel: 425.882.7000
W. E. Tel: 800.248.9953

West Virginia
A. E. Tel: 800.638.5988

Wisconsin
Milwaukee
A. E. Tel: 414.513.1500
W. E. Tel: 800.867.9953
Wauwatosa
I. E. Tel: 414.258.5338

Wyoming
A. E. Tel: 800.332.9326
W. E. Tel: 801.974.9953

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Sales Offices and Design
Resource Centers

LSI Logic Corporation
Corporate Headquarters
1551 McCarthy Blvd
Milpitas CA 95035
Tel: 408.433.8000
Fax: 408.433.8989

NORTH AMERICA

California
Irvine
18301 Von Karman Ave
Suite 900
Irvine, CA 92612

♦ Tel: 949.809.4600
Fax: 949.809.4444

Pleasanton Design Center
5050 Hopyard Road, 3rd Floor
Suite 300
Pleasanton, CA 94588
Tel: 925.730.8800
Fax: 925.730.8700

San Diego
7585 Ronson Road
Suite 100
San Diego, CA 92111
Tel: 858.467.6981
Fax: 858.496.0548

Silicon Valley
1551 McCarthy Blvd
Sales Office
M/S C-500
Milpitas, CA 95035

♦ Tel: 408.433.8000
Fax: 408.954.3353
Design Center
M/S C-410
Tel: 408.433.8000
Fax: 408.433.7695

Wireless Design Center
11452 El Camino Real
Suite 210
San Diego, CA 92130
Tel: 858.350.5560
Fax: 858.350.0171

Colorado
Boulder
4940 Pearl East Circle
Suite 201
Boulder, CO 80301

♦ Tel: 303.447.3800
Fax: 303.541.0641

Colorado Springs
4420 Arrowswest Drive
Colorado Springs, CO 80907
Tel: 719.533.7000
Fax: 719.533.7020

Fort Collins
2001 Danfield Court
Fort Collins, CO 80525
Tel: 970.223.5100
Fax: 970.206.5549

Florida
Boca Raton
2255 Glades Road
Suite 324A
Boca Raton, FL 33431
Tel: 561.989.3236
Fax: 561.989.3237

Georgia
Alpharetta
2475 North Winds Parkway
Suite 200
Alpharetta, GA 30004
Tel: 770.753.6146
Fax: 770.753.6147

Illinois
Oakbrook Terrace
Two Mid American Plaza
Suite 800
Oakbrook Terrace, IL 60181
Tel: 630.954.2234
Fax: 630.954.2235

Kentucky
Bowling Green
1262 Chestnut Street
Bowling Green, KY 42101
Tel: 270.793.0010
Fax: 270.793.0040

Maryland
Bethesda
6903 Rockledge Drive
Suite 230
Bethesda, MD 20817
Tel: 301.897.5800
Fax: 301.897.8389

Massachusetts
Waltham
200 West Street
Waltham, MA 02451

♦ Tel: 781.890.0180
Fax: 781.890.6158

Burlington - Mint Technology
77 South Bedford Street
Burlington, MA 01803
Tel: 781.685.3800
Fax: 781.685.3801

Minnesota
Minneapolis
8300 Norman Center Drive
Suite 730
Minneapolis, MN 55437

♦ Tel: 612.921.8300
Fax: 612.921.8399

New Jersey
Red Bank
125 Half Mile Road
Suite 200
Red Bank, NJ 07701
Tel: 732.933.2656
Fax: 732.933.2643

Cherry Hill - Mint Technology
215 Longstone Drive
Cherry Hill, NJ 08003
Tel: 856.489.5530
Fax: 856.489.5531

New York
Fairport
550 Willowbrook Office Park
Fairport, NY 14450
Tel: 716.218.0020
Fax: 716.218.9010

North Carolina
Raleigh
Phase II
4601 Six Forks Road
Suite 528
Raleigh, NC 27609
Tel: 919.785.4520
Fax: 919.783.8909

Oregon
Beaverton
15455 NW Greenbrier Parkway
Suite 235
Beaverton, OR 97006
Tel: 503.645.0589
Fax: 503.645.6612

Texas
Austin
9020 Capital of TX Highway North
Building 1
Suite 150
Austin, TX 78759
Tel: 512.388.7294
Fax: 512.388.4171

Plano
500 North Central Expressway
Suite 440
Plano, TX 75074

♦ Tel: 972.244.5000
Fax: 972.244.5001

Houston
20405 State Highway 249
Suite 450
Houston, TX 77070
Tel: 281.379.7800
Fax: 281.379.7818

Canada
Ontario
Ottawa
260 Hearst Way
Suite 400
Kanata, ON K2L 3H1

♦ Tel: 613.592.1263
Fax: 613.592.3253

INTERNATIONAL

France
Paris
LSI Logic S.A.
Immeuble Europa
53 bis Avenue de l'Europe
B.P. 139
78148 Velizy-Villacoublay
Cedex, Paris

♦ Tel: 33.1.34.63.13.13
Fax: 33.1.34.63.13.19

Germany
Munich
LSI Logic GmbH
Orleansstrasse 4
81669 Munich

♦ Tel: 49.89.4.58.33.0
Fax: 49.89.4.58.33.108

Stuttgart
Mittlerer Pfad 4
D-70499 Stuttgart

♦ Tel: 49.711.13.96.90
Fax: 49.711.86.61.428

Italy
Milan
LSI Logic S.P.A.
Centro Direzionale Colleoni Palazzo
Orione Ingresso 1
20041 Agrate Brianza, Milano

♦ Tel: 39.039.687371
Fax: 39.039.6057867

Japan
Tokyo
LSI Logic K.K.
Rivage-Shinagawa Bldg. 14F
4-1-8 Kounan
Minato-ku, Tokyo 108-0075

♦ Tel: 81.3.5463.7821
Fax: 81.3.5463.7820

Osaka
Crystal Tower 14F
1-2-27 Shiromi
Chuo-ku, Osaka 540-6014

♦ Tel: 81.6.947.5281
Fax: 81.6.947.5287

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

Sales Offices and Design
Resource Centers
(Continued)

Korea
Seoul
LSI Logic Corporation of
Korea Ltd
10th Fl., Haesung 1 Bldg.
942, Daechi-dong,
Kangnam-ku, Seoul, 135-283
Tel: 82.2.528.3400
Fax: 82.2.528.2250

The Netherlands
Eindhoven
LSI Logic Europe Ltd
World Trade Center Eindhoven
Building ‘Rijder’
Bogert 26
5612 LZ Eindhoven
Tel: 31.40.265.3580
Fax: 31.40.296.2109

Singapore
Singapore
LSI Logic Pte Ltd
7 Temasek Boulevard
#28-02 Suntec Tower One
Singapore 038987
Tel: 65.334.9061
Fax: 65.334.4749

Sweden
Stockholm
LSI Logic AB
Finlandsgatan 14
164 74 Kista

♦ Tel: 46.8.444.15.00
Fax: 46.8.750.66.47

Taiwan
Taipei
LSI Logic Asia, Inc.
Taiwan Branch
10/F 156 Min Sheng E. Road
Section 3
Taipei, Taiwan R.O.C.
Tel: 886.2.2718.7828
Fax: 886.2.2718.8869

United Kingdom
Bracknell
LSI Logic Europe Ltd
Greenwood House
London Road
Bracknell, Berkshire RG12 2UB

♦ Tel: 44.1344.426544
Fax: 44.1344.481039

♦ Sales Offices with
Design Resource Centers

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

International Distributors

Australia
New South Wales
Reptechnic Pty Ltd
3/36 Bydown Street
Neutral Bay, NSW 2089

♦ Tel: 612.9953.9844
Fax: 612.9953.9683

Belgium
Acal nv/sa
Lozenberg 4
1932 Zaventem
Tel: 32.2.7205983
Fax: 32.2.7251014

China
Beijing
LSI Logic International
Services Inc.
Beijing Representative
Office
Room 708
Canway Building
66 Nan Li Shi Lu
Xicheng District
Beijing 100045, China
Tel: 86.10.6804.2534 to 38
Fax: 86.10.6804.2521

France
Rungis Cedex
Azzurri Technology France
22 Rue Saarinen
Sillic 274
94578 Rungis Cedex
Tel: 33.1.41806310
Fax: 33.1.41730340

Germany
Haar
EBV Elektronik
Hans-Pinsel Str. 4
D-85540 Haar
Tel: 49.89.4600980
Fax: 49.89.46009840

Munich
Avnet Emg GmbH
Stahlgruberring 12
81829 Munich
Tel: 49.89.45110102
Fax: 49.89.42.27.75

Wuennenberg-Haaren
Peacock AG
Graf-Zepplin-Str 14
D-33181 Wuennenberg-Haaren
Tel: 49.2957.79.1692
Fax: 49.2957.79.9341

Hong Kong
Hong Kong
AVT Industrial Ltd
Unit 608 Tower 1
Cheung Sha Wan Plaza
833 Cheung Sha Wan Road
Kowloon, Hong Kong
Tel: 852.2428.0008
Fax: 852.2401.2105

Serial System (HK) Ltd
2301 Nanyang Plaza
57 Hung To Road, Kwun Tong
Kowloon, Hong Kong
Tel: 852.2995.7538
Fax: 852.2950.0386

India
Bangalore
Spike Technologies India
Private Ltd
951, Vijayalakshmi Complex,
2nd Floor, 24th Main,
J P Nagar II Phase,
Bangalore, India 560078

♦ Tel: 91.80.664.5530
Fax: 91.80.664.9748

Israel
Tel Aviv
Eastronics Ltd
11 Rozanis Street
P.O. Box 39300
Tel Aviv 61392
Tel: 972.3.6458777
Fax: 972.3.6458666

Japan
Tokyo
Daito Electron
Sogo Kojimachi No.3 Bldg
1-6 Kojimachi
Chiyoda-ku, Tokyo 102-8730
Tel: 81.3.3264.0326
Fax: 81.3.3261.3984

Global Electronics
Corporation
Nichibei Time24 Bldg. 35 Tansu-cho
Shinjuku-ku, Tokyo 162-0833
Tel: 81.3.3260.1411
Fax: 81.3.3260.7100
Technical Center
Tel: 81.471.43.8200

Marubeni Solutions
1-26-20 Higashi
Shibuya-ku, Tokyo 150-0001
Tel: 81.3.5778.8662
Fax: 81.3.5778.8669

Shinki Electronics
Myuru Daikanyama 3F
3-7-3 Ebisu Minami
Shibuya-ku, Tokyo 150-0022
Tel: 81.3.3760.3110
Fax: 81.3.3760.3101

Yokohama-City
Innotech
2-15-10 Shin Yokohama
Kohoku-ku
Yokohama-City, 222-8580
Tel: 81.45.474.9037
Fax: 81.45.474.9065

Macnica Corporation
Hakusan High-Tech Park
1-22-2 Hadusan, Midori-Ku,
Yokohama-City, 226-8505
Tel: 81.45.939.6140
Fax: 81.45.939.6141

The Netherlands
Eindhoven
Acal Nederland b.v.
Beatrix de Rijkweg 8
5657 EG Eindhoven
Tel: 31.40.2.502602
Fax: 31.40.2.510255

Switzerland
Brugg
LSI Logic Sulzer AG
Mattenstrasse 6a
CH 2555 Brugg
Tel: 41.32.3743232
Fax: 41.32.3743233

Taiwan
Taipei
Avnet-Mercuries
Corporation, Ltd
14F, No. 145,
Sec. 2, Chien Kuo N. Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2516.7303
Fax: 886.2.2505.7391

Lumax International
Corporation, Ltd
7th Fl., 52, Sec. 3
Nan-Kang Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2788.3656
Fax: 886.2.2788.3568

Prospect Technology
Corporation, Ltd
4Fl., No. 34, Chu Luen Street
Taipei, Taiwan, R.O.C.
Tel: 886.2.2721.9533
Fax: 886.2.2773.3756

Wintech Microeletronics
Co., Ltd
7F., No. 34, Sec. 3, Pateh Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2579.5858
Fax: 886.2.2570.3123

United Kingdom
Maidenhead
Azzurri Technology Ltd
16 Grove Park Business Estate
Waltham Road
White Waltham
Maidenhead, Berkshire SL6 3LW
Tel: 44.1628.826826
Fax: 44.1628.829730

Milton Keynes
Ingram Micro (UK) Ltd
Garamonde Drive
Wymbush
Milton Keynes
Buckinghamshire MK8 8DF
Tel: 44.1908.260422

Swindon
EBV Elektronik
12 Interface Business Park
Bincknoll Lane
Wootton Bassett,
Swindon, Wiltshire SN4 8SY
Tel: 44.1793.849933
Fax: 44.1793.859555

♦ Sales Offices with
Design Resource Centers

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

w
w

w
.D

a
ta

S
h
e
e
t4

U
.c

o
m

www.DataSheet4U.com

	ARM946E-S Microprocessor Core with Cache
	Chapter�1 Introduction
	1.1 About the ARM946E-S
	1.2 Microprocessor Block Diagram
	Figure�1.1 ARM946E-S Block Diagram
	1.2.1 ARM9E-S Processor Core
	1.2.2 System Controller
	1.2.3 CP15 System Control Coprocessor
	1.2.4 Data and Instruction Caches and Control
	1.2.5 Protection Unit
	1.2.6 Instruction and Data SRAMs
	1.2.7 AHB Interface Unit and Write Buffer
	1.2.8 External Coprocessor Interface
	1.2.9 JTAG and Debug Interface Port
	1.2.10 Embedded Trace Module Interface

	1.3 CoreWare® Program

	Chapter�2 Signal Descriptions
	2.1 Signal Properties and Requirements
	Figure�2.1 ARM946E-S Signal Diagram

	2.2 Clock Interface Signals
	2.3 AHB Signals
	2.4 Instruction RAM Signals
	2.5 Data RAM Signals
	2.6 Instruction Cache Signals
	2.7 Data Cache Signals
	2.8 Coprocessor Interface Signals
	2.9 Debug Signals
	2.10 JTAG Signals
	2.11 Miscellaneous Signals
	2.12 ETM Interface Signals
	2.13 ATPG Scan Control Signals

	Chapter�3 Programmer’s Model
	3.1 About the ARM946E-S Programmer’s Model
	3.2 About the ARM9E-S Programmer’s Model
	3.3 CP15 Registers
	Table 3.1 CP15 Register Map�
	3.3.1 Accessing CP15 Registers
	Table 3.2 CP15 Abbreviations
	Figure�3.1 MRC and MCR Instruction Format

	3.3.2 ID Code Register (0)
	Figure�3.2 ID Code Register

	3.3.3 Cache Type Register (0)
	Figure�3.3 Cache Type Register

	3.3.4 Tightly Coupled Memory Size Register (0)
	Figure�3.4 Tightly Coupled Memory Size Register

	3.3.5 Control Register (1)
	Figure�3.5 Control Register

	3.3.6 Cache Configuration Registers (2)
	Figure�3.6 Instruction/Data Cacheable Bits Register

	3.3.7 Write Buffer Control Register (3)
	Figure�3.7 Write Buffer Control Register

	3.3.8 Access Permission Registers (5)
	3.3.8.1 Extended Instruction/Data Access Permission Registers
	Figure�3.8 Instruction/Data Access Permission (I/DAP) Register (Extended)

	3.3.8.2 Standard Instruction/Data Access Permission Registers
	Figure�3.9 Instruction/Data Access Permission (I/DAP) Register (Standard)

	3.3.8.3 Programming the Access Permission Registers

	3.3.9 Protection Region/Base Size (PR/BS) Registers (6)
	Table 3.3 Accessing PR/BS Registers
	Figure�3.10 PR/BS Register
	3.3.9.1 Example Base Setting

	3.3.10 Cache Operations Register (7)
	Table 3.4 Cache Operations�
	Figure�3.11 Index and Set Format
	Table 3.5 Index Fields for Supported Cache Sizes�
	Figure�3.12 Address Format
	3.3.10.1 Cache Clean and Flush Operations
	3.3.10.2 Noncache Operations

	3.3.11 Cache Lockdown Registers (9)
	Figure�3.13 Cache Lockdown Register

	3.3.12 Tightly Coupled Memory Region Registers (9)
	Figure�3.14 Tightly Coupled Memory Region Register Format

	3.3.13 Trace Process Identifier Register (13)
	Figure�3.15 Trace Process ID Register
	3.3.13.1 Register 15, Test State Register
	Figure�3.16 Test State Register

	3.3.14 Cache Debug Index Register (15)
	Table 3.6 Cache Debug Operations�
	Figure�3.17 Cache Debug Index Register - Index/Set Format
	Figure�3.18 Data Format for Tag Read/Write Operations
	Table 3.7 Tag and Index Fields for Supported Cache Sizes�

	3.4 CP14 Registers
	Table 3.8 Coprocessor 14 Register Map
	3.4.1 Debug Comms Channel Status Register (C0)
	Figure�3.19 Debug Comms Channel Status Register

	3.4.2 Debug Status Register (C2)
	Figure�3.20 Coprocessor 14 Debug Status Register

	Chapter�4 Caches
	4.1 Cache Architecture
	Figure�4.1 Example 8 Kbyte Cache
	Figure�4.2 Access Address for a 4 Kbyte Cache
	Table 4.1 Tag and Index Fields for Supported Cache Sizes�

	4.2 I-Cache
	4.2.1 Enabling and Disabling the I-Cache
	4.2.2 I-Cache Operation
	4.2.3 I-Cache Validity
	4.2.4 I-Cache Flush

	4.3 D-Cache
	4.3.1 Enabling and Disabling the D-Cache
	4.3.2 D-Cache Operation
	4.3.2.1 Cd Bit - Cache Loads and Stores
	Table 4.2 Cd Bit Function

	4.3.2.2 Cd and Bd Bits - Cache Stores
	4.3.2.3 Load and Store Multiples

	4.3.3 D-Cache Validity
	4.3.4 D-Cache Clean and Flush
	Figure�4.3 Register 7, Rd Format
	Table 4.3 Calculating Index Addresses

	4.4 Cache Lockdown
	4.4.1 Locking Down the Caches
	4.4.1.1 D-Cache Lockdown
	4.4.1.2 I-Cache Lockdown
	4.4.1.3 Example I-Cache Lockdown Subroutine

	Chapter�5 Protection Unit
	5.1 About the Protection Unit
	Figure�5.1 ARM946E-S Protection Unit

	5.2 Enabling the Protection Unit
	5.3 Memory Regions
	5.3.1 Region Base Address
	5.3.2 Region Size
	5.3.3 Partition Attributes

	5.4 Overlapping Regions
	Figure�5.2 Overlapping Memory Regions

	5.5 Background Regions

	Chapter�6 Tightly Coupled SRAM
	6.1 ARM946E-S SRAM Requirements
	Figure�6.1 SRAM Read Cycle

	6.2 Using CP15 Control Register
	6.2.1 Enabling the I-SRAM
	6.2.2 Disabling the I-SRAM
	6.2.3 I-SRAM Load Mode
	6.2.4 Enabling and Disabling the D-SRAM
	6.2.5 D-SRAM Load Mode

	Chapter�7 Bus Interface Unit and Write Buffer
	7.1 About the BIU and Write Buffer
	7.2 AHB Bus Master Interface
	7.2.1 About the AHB
	7.2.2 ARM946E-S Transfer Descriptions
	7.2.3 Burst Sizes
	Table 7.1 Supported Burst Types

	7.2.4 Line Fetch Transfers
	Figure�7.1 Line Fetch Transfer

	7.2.5 Back-to-Back Line Fetches
	Figure�7.2 Back-to-Back Line Fetches

	7.2.6 Uncached Transfers
	Figure�7.3 Nonsequential Uncached Accesses

	7.2.7 Burst Accesses
	Figure�7.4 Data Burst Followed by Instruction Fetch

	7.2.8 Bursts Crossing 1 Kbyte Boundary
	Figure�7.5 Crossing a 1 Kbyte Boundary

	7.3 Noncached Thumb Instruction Fetches
	7.4 AHB Clocking
	7.4.1 CLK-to-HCLK Skew
	Figure�7.6 AHB Clock Relationships
	7.4.1.1 Clock Tree Insertion at Top Level
	Figure�7.7 ARM946E-S CLK to AHB HCLK Sampling

	7.4.1.2 Hierarchical Clock Tree Insertion

	7.5 Write Buffer
	7.5.1 Write Buffer Operation
	Table 7.2 Data Write Modes

	7.5.2 Enabling and Disabling the Write Buffer
	7.5.3 Using Self-Modifying Code

	Chapter�8 External Coprocessor Interface
	8.1 About the External Coprocessor Interface
	Figure�8.1 Coprocessor Clocking

	8.2 Coprocessor Instructions
	8.3 LDC/STC Instructions
	Figure�8.2 LDC/STC Cycle Timing
	8.3.1 Coprocessor Handshake States
	Table 8.1 Coprocessor Handshake States

	8.3.2 Coprocessor Handshake Encoding
	Table 8.2 Handshake Encoding

	8.3.3 Multiple External Coprocessors

	8.4 MCR/MRC Instructions
	Figure�8.3 MCR/MRC Transfer Timing with Busy-Wait

	8.5 Interlocked MCR Instructions
	Figure�8.4 Interlocked MCR Timing with Busy-Wait

	8.6 CDP Instructions
	Figure�8.5 Late Cancelled CDP Instruction

	8.7 Privileged Instructions
	Figure�8.6 Privileged Instructions

	8.8 Busy-Waiting and Interrupts
	Figure�8.7 Busy-Waiting and Interrupts

	Chapter�9 Debug Interface
	9.1 Debug Systems
	Figure�9.1 Typical Debug System
	9.1.1 Debug Host
	9.1.2 Protocol Converter
	9.1.3 ARM946E�S Debug Target
	Figure�9.2 ARM9E-S Processor and Debug Logic

	9.2 Debug Operations Overview
	9.3 Debug Using the Serial Interface and TAP Controller
	9.3.1 Serial Registers
	9.3.2 TAP Controller State Machine
	Figure�9.3 TAP Controller State Diagram
	9.3.2.1 Resetting the TAP Controller
	9.3.2.2 JTAG Interface Signals and Pull-Up Resistors
	9.3.2.3 Test Access Port Instructions
	Table 9.1 Test Access Port Instruction Descriptions (Cont.)

	9.3.3 Scan Chains
	Table 9.2 ARM946E-S Scan Chain Functions (Cont.)
	9.3.3.1 Scan Chain 1
	Table 9.3 Scan Chain 1 Bit Allocation

	9.3.3.2 Scan Chain 2
	Table 9.4 Scan Chain 2 Bit Allocation

	9.3.3.3 Scan Chain 3
	9.3.3.4 Scan Chain 15
	Table 9.5 Scan Chain 15 Bit Allocation
	Table 9.6 Mapping of Scan Chain 15 Address Field to CP15 Registers (Cont.)

	9.3.4 Debug Access to the Caches
	Figure�9.4 Tag Address Format
	Figure�9.5 Cache Index Register Format

	9.4 Debug Using the EmbeddedICE-RT
	Figure�9.6 The ARM9E-S, Tap Controller, and EmbeddedICE-RT
	9.4.1 Disabling EmbeddedICE-RT
	9.4.2 Debug Communications Channel
	9.4.3 Debug Comms Channel Registers
	Table 9.7 Coprocessor 14 Register Map

	9.4.4 Communications Using the Comms Channel
	9.4.4.1 Sending a Message to the Debugger
	9.4.4.2 Receiving a Message from the Debugger

	9.5 Breakpoints, Watchpoints, and Debug Requests
	9.5.1 Entry into Debug State on Breakpoint
	Figure�9.7 Breakpoint Timing

	9.5.2 Breakpoints and Exceptions
	9.5.3 Watchpoints
	Figure�9.8 Watchpoint Entry with Data Processing Instruction
	Figure�9.9 Watchpoint Entry with Branch

	9.5.4 Watchpoints and Exceptions
	9.5.5 Debug Request
	9.5.6 Actions of the ARM9E�S in Debug State

	9.6 Determining the Core and System State
	9.7 Real-Time Debug
	9.8 ARM9E�S Clock Domains
	9.9 Synchronizing Debug Clocks
	Figure�9.10 Clock Synchronization Logic

	Chapter�10 ETM Interface
	10.1 About the ETM
	10.1.1 Trace Port
	10.1.2 Triggering Facilities

	10.2 ETM Interface
	Figure�10.1 ARM946E-S ETM Interface

	10.3 Enabling the ETM Interface

	Chapter�11 Test Support
	11.1 About the ARM946E-S Test Methodology
	11.2 Scan Insertion and ATPG
	11.3 BIST of Memory Arrays

	Appendix�A AC Parameters
	A.1 Timing Diagrams
	Figure�A.1 Clock, Reset, and AHB Enable Timing
	Figure�A.2 AHB Bus Request and Grant Related Timing
	Figure�A.3 AHB Bus Master Timing
	Figure�A.4 Coprocessor Interface Timing
	Figure�A.5 Debug Interface Timing
	Figure�A.6 JTAG Interface Timing
	Figure�A.7 DBGSDOUT to DBGTDO Timing
	Figure�A.8 Exception and Configuration Timing
	Figure�A.9 INTEST Wrapper Timing
	Figure�A.10 ETM Interface Timing

	A.2 AC Timing Parameter Definitions
	Table�A.1 Timing Parameter Definitions (Cont.)

	Index
	Customer Feedback

