

LM1112A/LM1112B/LM1112C Dolby[®] B-Type Noise Reduction Processor

General Description

The LM1112 is a monolithic integrated circuit specifically designed to realize the Dolby B-type noise reduction system.

It is a replacement for the LM1111 and the Signetics NE-645/648 but with improved performance figures.

Features

- Very high signal/noise ratio, 74 dB encode (CCIR/ARM)
- Wide supply voltage range, 6V to 20V
- \blacksquare Very close matching to standard Dolby characteristics
- Audible switch-on transients greatly reduced
 Improved temperature performance
- Reduced number of precision external components
- Reduced number of precision external composition
 Improved transient stability
- Input protection diodes

Available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, from whom licensing and application information must be obtained. Dolby and the double-D symbol are registered trademarks of Dolby Laboratories Licensing Corporation.

LM1112A/LM1112B/LM1112C Dolby B-Type Noise Reduction Processor

April 1987

© 1995 National Semiconductor Corporation TL/H/7876

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 24V

Storage Temperature Range -65°C to +150°C Lead Temperature (Soldering, 10 sec.) 260°C

Electrical Characteristics	$V_{S} = 12V$, $T_{A} = 25^{\circ}$ C. 0 dB refers to Dolby level which is 580 mVrms at pin 3.
Operating Temperature Range	-20°C to +70°C

Parameter	Conditions	LM1112A		LM1112B			LM1112C		Unite		
Farameter	Min		Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Supply Voltage Range		6		20	6		20	6		20	V
Supply Current	nt		15	20		15	20		15	20	mA
Voltage Gain (Pin 5–3)	1 kHz Pins 6 and 12 Connected	24.5	25.5	26.5	24.5	25.5	26.5	24	25.5	27	dB
(Pin 5–6)	1 kHz Pin 6 Open		14.7			14.7			14.7		dB
(Pin 3–7)	1 kHz (Noise Reduction Out)	-0.5	0	0.5	-0.5	0	0.5	-1	0	1	dB
Distortion	1 kHz, 0 dB		0.03	0.1		0.03	0.1		0.03	0.1	%
	10 kHz, +10 dB		0.2			0.2		0.			%
Signal Handling	1 kHz, 0.3% Distortion										
	$V_{S} = 6V$		8.5			8.5			8.5		dB
	$V_{\rm S} = 12V$	13	15.5		13	15.5		13	15.5		dB
	$V_{\rm S} = 18V$		19			19			19		dB
Signal/Noise Ratio at Pin 7 (Note 1)	Pins 6 and 2 Connected										
Encode Mode (CCIR/ARM) NR In	R _S = 10k	71.5	74		71	74		70	74		dB
	$R_S = 1k$		77			77			77		dB
NR Out	R _S = 10k		83			83			83		dB
Decode Mode (CCIR/ARM)	$R_{S} = 10k$		83			83			83		dB
Encode Characteristics	Input to Pin 5 10 kHz, 0 dB	0	0.5	1.0	-0.2	0.5	1.2	-0.5	0.5	1.5	dB
	1.3 kHz, -20 dB	-16.2	-15.7	-15.2	-16.7	-15.7	-14.7	-17.2	-15.7	-14.2	dB
	5 kHz, -20 dB	-17.3	-16.8	-16.3	-17.8	-16.8	-15.8	-18.3	-16.8	-15.3	dB
	3 kHz, -30 dB	-21.7	-21.2	-20.7	-22.2	-21.2	-20.2	-22.7	-21.2	-19.7	dB
	5 kHz, -30 dB	-22.3	-21.8	-21.3	-22.8	-21.8	-20.8	-23.3	-21.8	-20.3	dB
	10 kHz, -30 dB	-24.0	-23.5	-23.0	-24.5	-23.5	-22.5	-25.0	-23.5	-22.0	dB
	10 kHz, -40 dB	-30.1	-29.6	-29.1	-30.3	-29.6	-28.9	-30.6	-29.6	-28.6	dB
Input Resistance	Pin 5	45	65	80	45	65	80	45	65	80	kΩ
	Pin 2	4.3	5.6	6.9	4.3	5.6	6.9	4.3	5.6	6.9	kΩ
Output Resistance	Pin 6	1.8	2.4	3.0	1.8	2.4	3.0	1.8	2.4	3.0	kΩ
	Pin 3		30	45		30	45		30	45	Ω
	Pin 7		30	45		30	45		30	45	Ω
PSRR	f = 120 Hz		40			40			40		dB
Load Impedance Pin 3		5			5			5			kΩ
Pin 7		5			5			5			kΩ
Note 1: Gaussian noise, measured over a period of 50 ms with a CCIR filler and an average responding meter.											

In place of the normal mechanical noise reduction on/off switch, the circuit below is often used to permit electrical NR control. When using this circuit, the following points should be noted:

- Signal boost is reduced by increasing DC voltage on Pin 14 (see curve). A voltage of approximately 3V is adequate to achieve NR OFF.
- Supply current may be significantly increased by high pin 14 forced voltages. Values for V and R should thus be chosen such that pin 14 voltage is 3V-4V.
- 3. When electrical NR switching is used, signal level is slightly affected by the minimum value of the internal variable impedance. (At 10 kHz-10 dB, a residual boost of approximately 0.4 dB remains.) This is not the case for mechanical NR switching.

Note 1: Where not otherwise specified, component tolerances are $\pm\,10\,\%.$

be reasonably expected to result in a significant injury

to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

0	National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0.180-530 85 86 Email: cnjwge@tevrn2.nsc.com Deutsch Tei: (+49) 0.180-530 85 85 English Tei: (+49) 0.180-532 78 32 Français Tei: (+49) 0.180-532 93 58 Italiano Tei: (+49) 0.180-532 14 680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tei: 81-043-299-2309 Fax: 81-043-299-2408
		Raliano Tel. (+43) 0-100-354 10 00	1 ax. (032) 2730-3300	

0.090 (2.286)

0.250 ± 0.010 (6.350 ± 0.254)

ŧ

4° TYP OPTIONAL

900 + 40 TYP

0.030 ± 0.015 (0.762±0.381) 0.100±0.010

(2.540±0.254)

TYP

INDEX AREA

PIN NO. 1

IDENT

٩

16 15

12

OPTION 02

0.300 - 0.320 (7.620 - 8.128)

95°±5°

0.280 (7.112) MIN

(0.325^{+0.040} -0.015

(8.255^{+1.016} -0.381

 $\frac{0.065}{(1.651)}$

ŧ

4

0.008 - 0.016 (0.203 - 0.406) TYP

N16E (REV F)

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications