

Features

- Constant-Voltage (CV) and Constant-current (CC) Control without Secondary-feedback Circuitry
- Green Mode PWM Frequency Linearly Decreasing
- Fixed PWM Frequency at 42kHz with Frequency Hopping to Solve EMI Problem
- Low Startup Current: 10µA
- Low Operating Current: 3.5mA
- . Peak-Current-Mode Control in CV Mode
- . Cycle-by-Cycle Current Limiting
- V_{DD} Over-Voltage Protection with Auto-Restart
- -V_{DD} Under-Voltage Lockout (UVLO)
- Gate Output Maximum Voltage Clamped at 18V
- Fixed Over-temperature Protection with Latch
- SOP-8 Package Available

Applications

www.DataSleet4Battery chargers for cellular phones, cordless phones, PDA, digital cameras, power tools

Replaces linear transformer and RCC SMPS

Related Resources

AN-6067 Design Guide for FAN100/102/FSEZ1016A/1216

Description

This highly integrated PWM controller, FAN100, provides several features to enhance the performance of low-power flyback converters. The proprietary topology enables simplified circuit design for battery charger applications. A low-cost, smaller, and lighter charger results when compared to a conventional design or a linear transformer. The startup current is only 10µA, which allows use of large startup resistance for further power saving.

To minimize the standby power consumption, the proprietary green-mode function provides off-time modulation to linearly decrease PWM frequency under light-load conditions. This green-mode function assists the power supply meeting the power conservation requirements.

Using FAN100, a charger can be implemented with fewest external components and minimized cost. A typical output CV/CC characteristic envelope is shown in Figure 1.

FAN100 controller is available in an 8-pin SOP package.

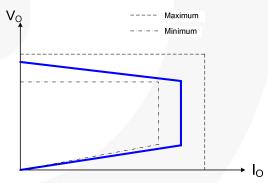
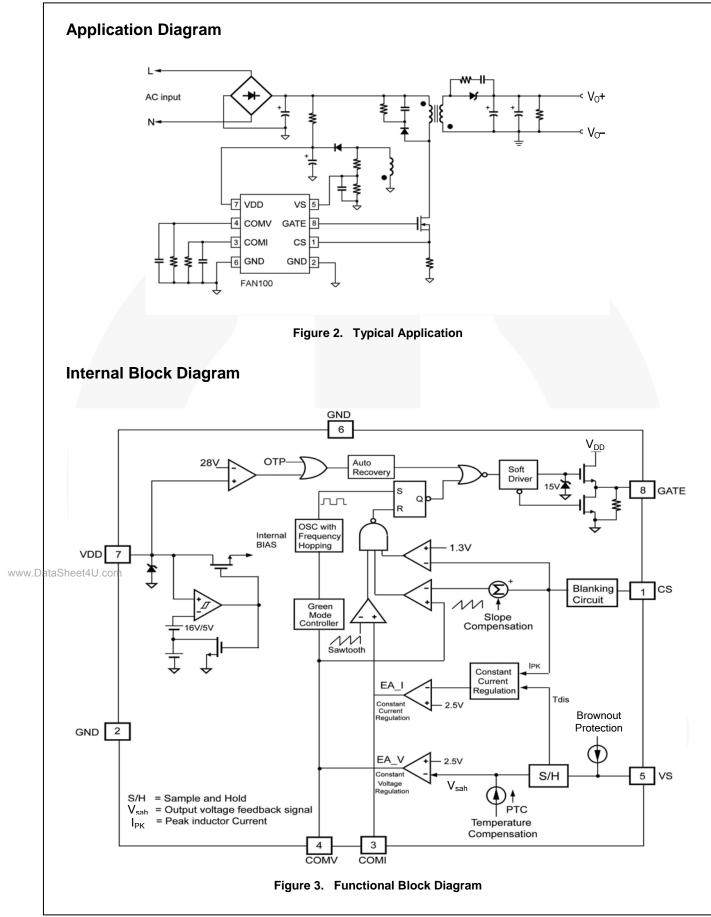
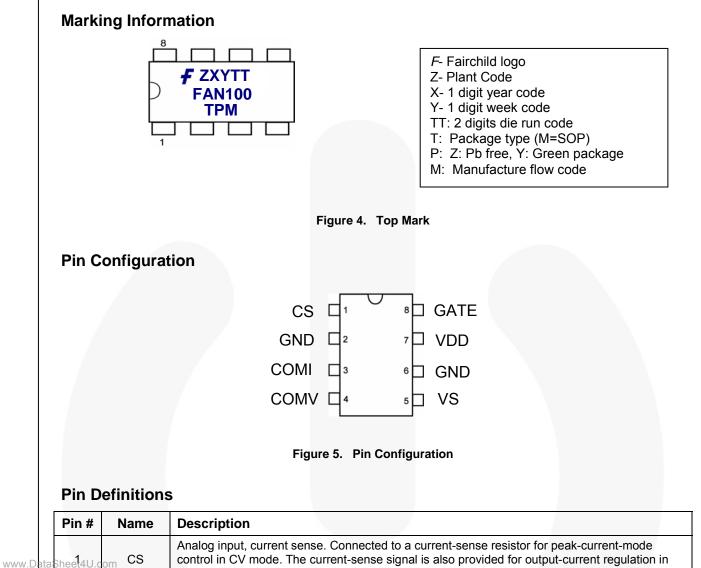


Figure 1. Typical Output V-I Characteristic


Ordering Information							
Part Number	Operating Temperature Range	Eco Status	Package	Packing Method			
FAN100MY	-40°C to +105°C	Green	8-Lead, Small Outline Package (SOP-8)	Tape & Reel			


🥙 For Fairchild's definition of "green" Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html</u>.

AN100 I Primary-Side-Control PWM Controller

FAIRCHILD

SEMICONDUCTOR

aSheet4U.o	om CS	control in CV mode. The current-sense signal is also provided for output-current regulation in CC mode.
2	GND	Voltage reference, ground.
3	СОМІ	Analog output, current compensation. Output of the current error amplifier. Connect a capacitor between COMI pin and GND for frequency compensation.
4	COMV	Analog output, voltage compensation. Output of the voltage error amplifier. Connect a capacitor between COMV pin and GND for frequency compensation.
5	VS	Analog input, voltage sense. Output-voltage-sense input for output-voltage regulation.
6	GND	Voltage reference, ground.
7	VDD	Supply, power supply.
8	GATE	Driver output. The totem-pole output driver to drive the power MOSFET.

П

AN100 — Primary-Side-Control PWM Controller

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{VDD}	DC Supply Voltage ^(1,2)		30	V
V _{VS}	VS Pin Input Voltage	-0.3	7.0	V
V _{CS}	CS Pin Input Voltage	-0.3	7.0	V
V _{COMV}	Voltage Error Amplifier Output Voltage	-0.3	7.0	V
V _{COMI}	Voltage Error Amplifier Output Voltage	-0.3	7.0	V
PD	Power Dissipation ($T_A < 50^{\circ}C$)		660	mW
Θ_{JA}	Thermal Resistance (Junction-to-Air)		150	°C /W
Θ _{JC}	Thermal Resistance (Junction-to-Case)		39	°C /W
TJ	Operating Junction Temperature		+150	°C
T _{STG}	Storage Temperature Range	-55	+150	°C
TL	Lead Temperature (Wave Soldering or IR, 10 Seconds)		+260	°C
ESD	Electrostatic Capability, Human Body Model, JEDEC: JESD22-A114		4.5	KV
EOD	Electrostatic Capability, Charged Device Model, JEDEC: JESD22-C101		2000	V

Notes:

1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

2. All voltage values, except differential voltages, are given with respect to GND pin.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended www.DataSloperating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

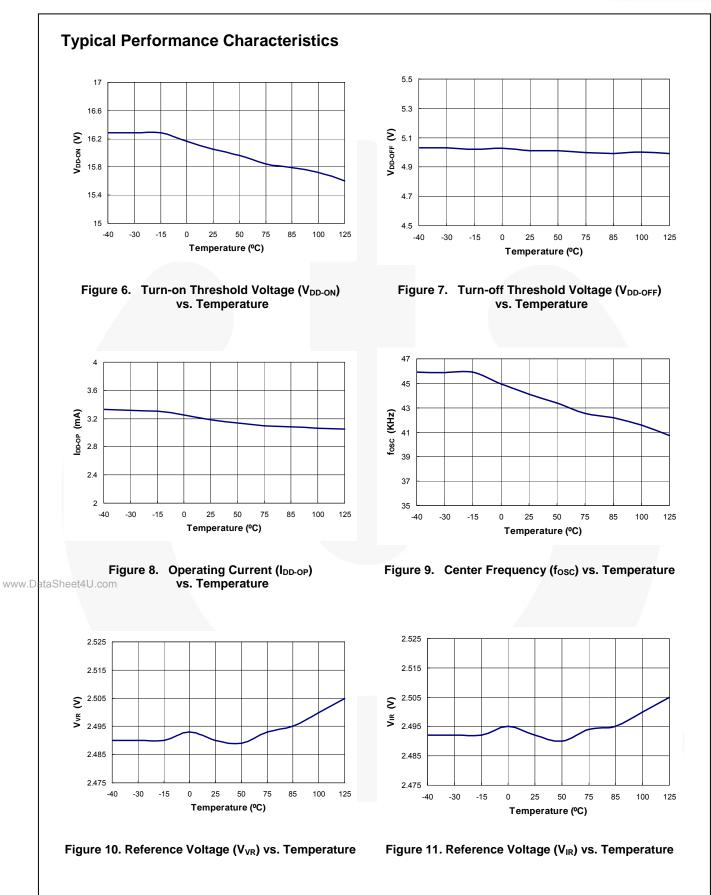
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
T _A	Operating Ambient Temperature		-40		+105	°C

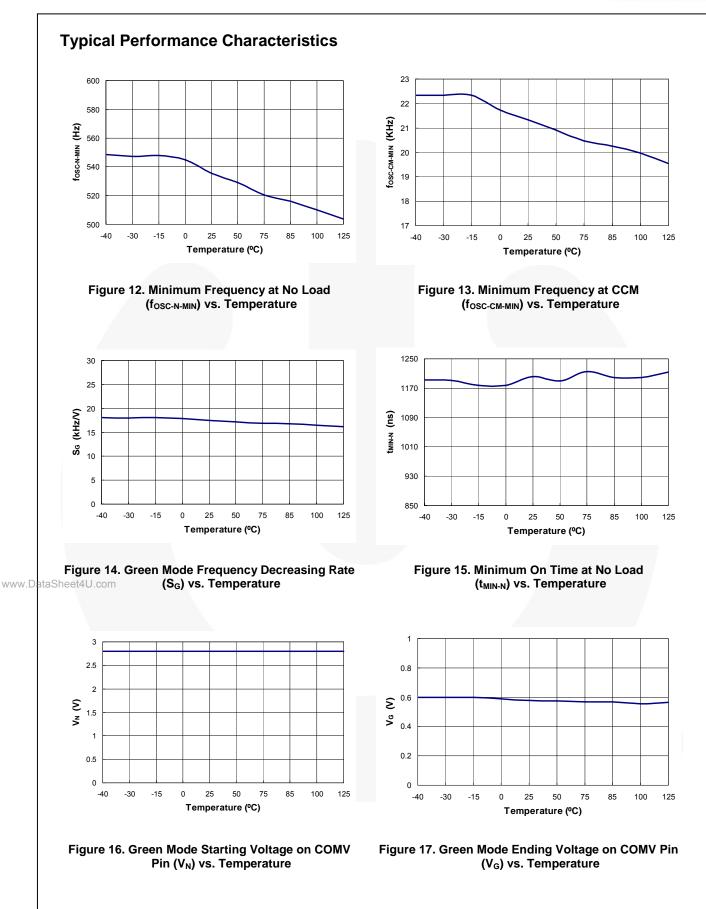
Electrical Characteristics

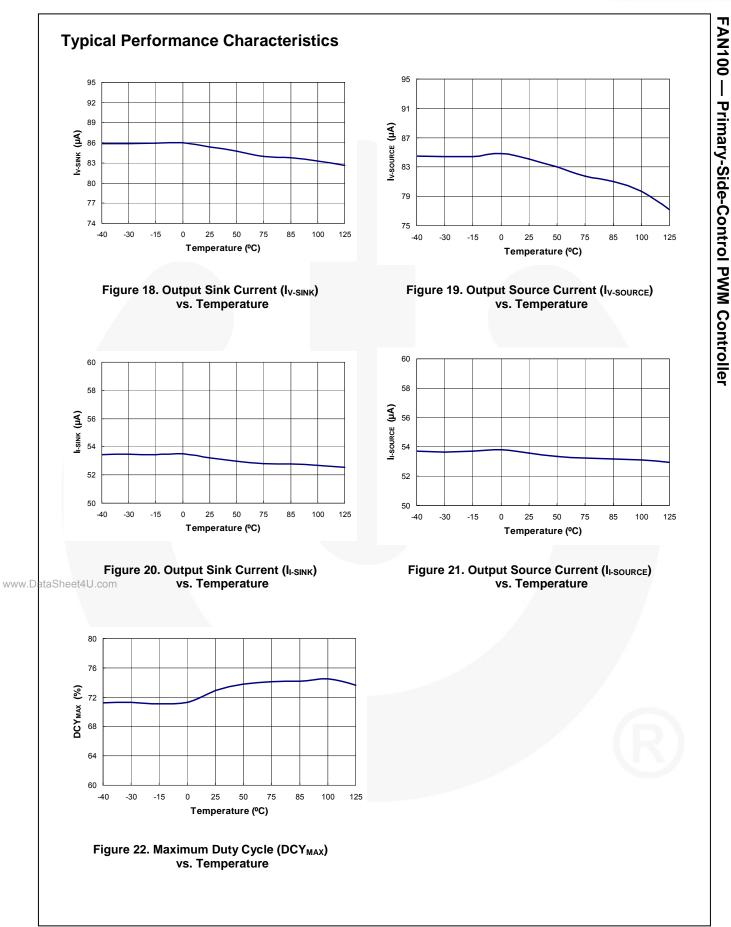
 $V_{\text{DD}}\text{=}15V$ and $T_{\text{A}}\text{=}25^{\circ}\text{C},$ unless otherwise specified.

Syı	mbol	Parameter		Conditions	Min.	Тур.	Max.	Units
VDD	SECT	ION		l	1	1	I	
١	/ _{OP}	Continuously Operating Voltage					25	V
V	DD-ON	Turn-On Threshold Voltage			15	16	17	V
VD	D-OFF	Turn-Off Thres	hold Voltage		4.5	5.0	5.5	V
Ι _D	D-OP	Operating Current		$\label{eq:VDD} \begin{array}{l} V_{DD} = 20V, \ f_S = f_{OSC}, \\ V_{VS} = 2V, \\ V_{CS} = 3V, \ C_L = 1nF \end{array}$		3.5	5.0	mA
I _{DD-}	GREEN	Green Mode Operating Supply Current		$\begin{array}{l} V_{DD}{=}20V, V_{VS}{=}2.7V \\ f_{S}{=}f_{OSC-N-MIN}, V_{CS}{=}0V \\ C_{L}{=}1nF, V_{COMV}{=}0V \end{array}$		1	2	mA
VD	D-OVP	V _{DD} Over-Volta Level	ge Protection	V _{CS} =3V, V _{VS} =2.3V	27	28	29	V
t _{D-V}	DDOVP	V _{DD} Over-Voltage Protection Debounce Time		f _S =f _{OSC} , V _{VS} =2.3V	100	250	400	μs
osc	ILLAT	OR SECTION						
		Frequency Frequency Range		T _A =25°C	39	42	45	
f _{osc}	OSC		Hopping	T _A =25°C	±1.8	±2.6	±3.6	KHz
t	FHR	Frequency Hop	ping Period	T _A =25°C		3		ms
foso	C-N-MIN	Minimum Frequ	uency at No Load	V _{VS} =2.7V, V _{COMV} =0V		550		Hz
fosc	-CM-MIN	Minimum Frequ	uency at CCM	V _{VS} =2.3V, V _{CS} =0.5V		20		KHz
1	f _{DV}	Frequency Var Deviation	iation vs. V _{DD}	V _{DD} =10V to 25V			5	%
t	f _{DT}	Frequency Var Temperature D		T _A =-40°C to 85°C			15	%
VOL	TAGE-	SENSE SECTI	ON					
l _{vs}	S-UVP	Sink Current for Protection	r Brownout	R _{VS} =20K		125		μA
	I _{tc}	IC Compensati	on Bias Current			9.5		μA
V _{BIA}	S-COMV	Adaptive Bias Voltage Dominated by V _{COMV}		V_{COMV} =0V, T_A =25°C, R_{VS} =20K Ω		1.4		V

Continued on following page...

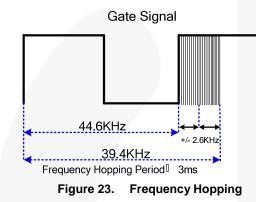

Electrical Characteristics (Continued)


 V_{DD} =15V and T_A=25°C, unless otherwise specified.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Current-Se	ense Section					
t _{PD}	Propagation Delay to GATE Output			100	200	ns
t _{MIN-N}	Minimum On Time at No Load	V _{VS} =-0.8V, R _S =2KΩ, V _{COMV} =1V		1100		ns
t _{MINCC}	Minimum On Time in CC Mode	V _{VS} =0V, V _{COMV} =2V		400		ns
D _{SAW}	Duty Cycle of SAW Limiter			40		%
V _{TH}	Threshold Voltage for Current Limit			1.3		V
Voltage-E	ror-Amplifier Section					
V_{VR}	Reference Voltage		2.475	2.500	2.525	V
V _N	Green Mode Starting Voltage on COMV Pin	f _S =f _{OSC} -2KHz V _{VS} =2.3V		2.8		V
V _G	Green Mode Ending Voltage on COMV Pin	f _S =1KHz		0.8		V
I_{V-SINK}	Output Sink Current	V _{VS} =3V, V _{COMV} =2.5V		90		μA
IV-SOURCE	Output Source Current	V _{VS} =2V, V _{COMV} =2.5V		90		μA
V _{V-HGH}	Output High Voltage	V _{VS} =2.3V	4.5			V
Current-E	ror-Amplifier Section					
V _{IR}	Reference Voltage		2.475	2.500	2.525	V
I _{I-SINK}	Output Sink Current	V _{CS} =3V, V _{COMI} =2.5V		55		μA
II-SOURCE	Output Source Current	V _{CS} =0V, V _{COMI} =2.5V		55		μA
V _{I-HGH}	Output High Voltage	V _{CS} =0V	4.5			V
Gate Secti	on					
DCYMAX	Maximum Duty Cycle			75		%
heet4U.com Vol	Output Voltage Low	V _{DD} =20V, I _O =10mA			1.5	V
V _{OH}	Output Voltage High	V _{DD} =8V, I _O =1mA	5			V
V _{OH_MIN}	Output Voltage High	V _{DD} =5.5V, I _O =1mA	4			V
tr	Rising Time	V_{DD} =20V, C _L =1nF		200	300	ns
t _f	Falling Time	V_{DD} =20V, C _L =1nF		80	150	ns
VCLAMP	Output Clamp Voltage	V _{DD} =25V		15	18	V
Over-Tem	perature-Protection Section					-
T _{OTP}	Threshold Temperature for OTP ⁽³⁾			+140		°C

Note:

3. When over-temperature protection is activated, the power system enters latch mode and output is disabled.



Functional Description

The proprietary topology of FAN100 enables simplified circuit design for battery charger applications. Without secondary feedback circuitry, the CV and CC control are achieved accurately. As shown in Figure 23, with the frequency-hopping PWM operation, EMI problems can be solved by using minimized filter components. FAN100 also provides many protection functions. The VDD pin is equipped with over-voltage protection and with under-voltage lockout. Pulse-by-pulse current limiting and CC control ensure over-current protection at heavy loads. The GATE output is clamped at 15V to protect the external MOSFET from over-voltage damage. Internal over-temperature-protection function shuts down the controller with latch when over-heated.

Startup Current

The startup current is 10µA. Low startup current allows a startup resistor with a high resistance and a lowwattage to supply the startup power for the controller. A 1.5M Ω , 0.25W, startup resistor and a 10µF/25V V_{DD} hold-up capacitor are sufficient for an AC-to-DC power www.DataStadapter with a wide input range (100V_{AC} to 240V_{AC})

Operating Current

The operating current has been reduced to 3.5mA. The low operating current results in higher efficiency and reduces the V_{DD} hold-up capacitance requirement. Once FAN100 enters "deep" green mode, the operating current is reduced to 1.2mA, which assists the power supply meeting power conservation requirements.

Green Mode Operation

Figure 24 shows the characteristics of the PWM frequency vs. the output voltage of the error amplifier (V_{COMV}). The FAN100 uses the positive, proportional, output load parameter (V_{COMV}) as an indication of the output load for modulating the PWM frequency. In heavy load conditions, the PWM frequency is fixed at 42KHz. Once V_{COMV} is lower than V_N, the PWM frequency starts to linearly decrease from 42KHz to 550Hz, providing

further power savings and meeting international power conservation requirements.

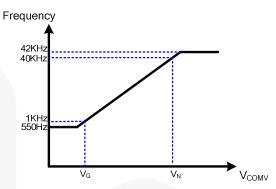


Figure 24. Green Mode Frequency vs. V_{COMV}

Constant Voltage (CV) and Constant Current (CC) Operation

An innovative technique allows the FAN100 to accurately achieve CV/CC characteristic output without secondary side voltage or current-feedback circuitry. A feedback signal for CV/CC operation from the reflected voltage across the primary auxiliary winding is proportional to secondary winding, so it provides the controller the feedback signal from the secondary side and achieves constant voltage output property. In constant-current-output operation, this voltage signal is detected and examined by the precise constant current regulation controller, which then determines the on-time of the MOSFET to control input power and provide constant current output property. With feedback voltage V_{CS} across current-sense resistor, the controller can obtain input power of power supply. Therefore, the region of constant current output operation can be adjusted by the current-sense resistor.

Temperature Compensation

Built-in temperature compensation provides better constant voltage regulation at different ambient temperatures. This internal compensation current is a positive temperature coefficient (PTC) current that can compensate the forward-voltage drop of the secondary diode of varying with temperature. This variation causes output voltage rising at high temperature.

Leading-Edge Blanking (LEB)

Each time the power MOSFET is switched on, a turn-on spike occurs at the sense resistor. To avoid premature termination of the switching pulse, a leading-edge blanking time is built in. Conventional RC filtering can be omitted. During this blanking period, the current-limit comparator is disabled and cannot switch off the gate driver.

Under-Voltage Lockout (UVLO)

The turn-on and turn-off thresholds are fixed internally at 16V and 5V. During start-up, the hold-up capacitor must be charged to 16V through the startup resistor to enable the FAN100. The hold-up capacitor continues to supply V_{DD} until power can be delivered from the auxiliary winding of the main transformer. V_{DD} must not drop below 5V during this startup process. This UVLO hysteresis window ensures that hold-up capacitor is adequate to supply V_{DD} during start-up.

V_{DD} Over-Voltage Protection (OVP)

 V_{DD} over-voltage protection prevents damage due to over-voltage conditions. When the voltage V_{DD} exceeds 28V due to abnormal conditions, PWM pulses are disabled until the V_{DD} voltage drops below the UVLO, then starts up again. Over-voltage conditions are usually caused by open feedback loops.

Over-Temperature Protection (OTP)

The built-in temperature-sensing circuit to shut down PWM output once the junction temperature exceeds gradually drops to the UVLO voltage. Some of the FAN100's internal circuits are shut down and V_{DD} gradually starts increasing again. When V_{DD} reaches 16V, all the internal circuits, including the temperature sensing circuit, start operating normally. If the junction temperature is still higher than 140°C, the PWM controller shuts down immediately. This situation continues until the temperature drops below 110°C.

Gate Output

The BiCMOS output stage is a fast totem pole gate driver. Cross conduction has been avoided to minimize heat dissipation, increase efficiency, and enhance reliability. The output driver is clamped by an internal 15V Zener diode to protect power MOSFET transistors against undesired over-voltage gate signals.

Built-in Slope Compensation

The sensed voltage across the current-sense resistor is used for current-mode control and pulse-by-pulse current limiting. Built-in slope compensation improves stability and prevents sub-harmonic oscillations due to peak-current mode control. The FAN100 has a synchronized, positively-sloped ramp built-in at each switching cycle.

Noise Immunity

Noise from the current sense or the control signal can cause significant pulse-width jitter, particularly in continuous-conduction mode. While slope compensation helps alleviate these problems, further precautions should still be taken. Good placement and layout practices should be followed. Avoiding long PCB traces and component leads, locating compensation and filter components near the FAN100, and increasing the power MOS gate resistance are advised.

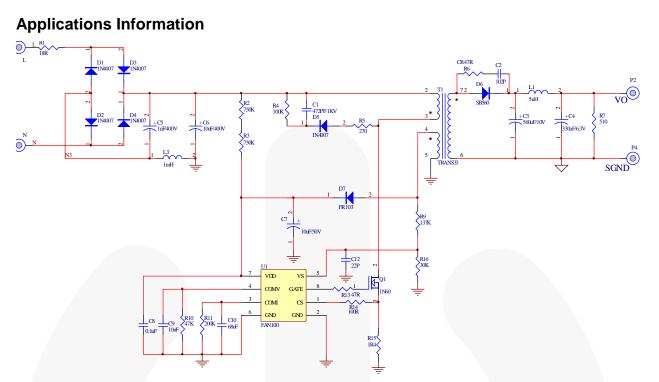
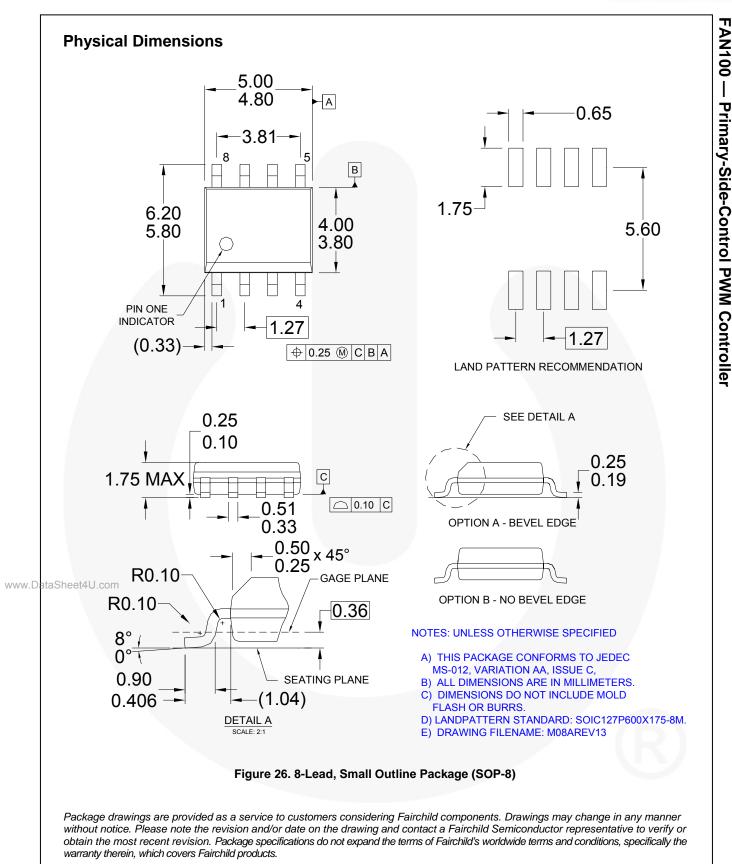



Figure 25. 5W (5V/1A) Application Circuit

BOM

Designato	Part Type	Designator	Part Type	
D1, D2, D3, D4, D5	1N4007	R4	R 100KΩ	
D6	SB560	R5	R 270Ω	
D7	FR103	R6	R 47Ω	
C1	CC 4.7nF/1KV	R7	R 510Ω	
C2	1nF	R9	R 137KΩ	
DataSheget4U.com	EC 560µF/10V	R10	R 47KΩ	
C4	EC 330µF/6.3V	R11	R 200KΩ	
C5	EC 1µF/400V	R13	R 47Ω	
C6	EC 10µF/400V	R14	R 100Ω	
C7	EC 10µF/50V	R15	R 1.4Ω	
C8	0.1µF	R16	R 30KΩ	
C9	10nF	L1	5µH	
C10	68nF	L3	1mH	
C12	22pF	Q1	MOSFET 1A/600V	
R1	R 18Ω	T1	EE16 (1.5mH)	
R2, R3	R 750KΩ	U1	IC FAN100	

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

AN100 ---

Primary-Side-Control PWM Controller

R ev. 136