

February 2009

FFD04H60S

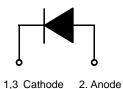
Hyperfast II Rectifier

Features

- High Speed Switching, t_{rr} < 50ns
- High Reverse Voltage and High Reliability
- High Reverse Voltage, V_F < 2.1V @ 4A
- RoHS Compliant

Applications

- · General Purpose
- Switching Mode Power Supply
- Free-Wheeling Diode for Motor Application
- · Power Switching Circuits


4A, 600V Hyperfast II Rectifier

The FFD04H60S is a hyperfast II rectifier and silicon nitride passivated ion-implanted epitaxial planar construction.

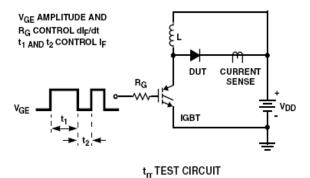
This device is intended for use as freewheeling/clamping rectifiers in a variety of switching power supplies and other power switching applications. Its low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
V_{RRM}	Peak Repetitive Reverse Voltage	600	V	
V_{RWM}	Working Peak Reverse Voltage	600	V	
V _R	DC Blocking Voltage	600	V	
I _{F(AV)}	Average Rectified Forward Current @ T _C = 130°C	4	Α	
I _{FSM}	Non-repetitive Peak Surge Current 60Hz Single Half-Sine Wave	40	А	
T _J , T _{STG}	Operating and Storage Temperature Range	-65 to +150	°C	

Thermal Characteristics

Symbol	Parameter	Ratings	Units
R_{\thetaJC}	Maximum Thermal Resistance, Junction to Case	4.0	°C/W

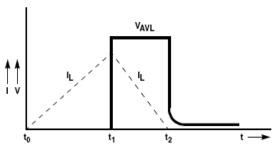

Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
F04H60S	FFD04H60S	D-PAK	13"Dia	=	2500

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Min.	Тур.	Max.	Units	
\/ 1	I _F = 4A	$T_{\rm C} = 25^{\rm o}{\rm C}$ $T_{\rm C} = 125^{\rm o}{\rm C}$	-	-	2.1	V
V _{FM} 1	$I_F = 4A$	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	-	1.7	V
I1	$V_R = 600V$	$T_{\rm C} = 25^{\rm o}{\rm C}$ $T_{\rm C} = 125^{\rm o}{\rm C}$	-	-	100	μА
I _{RM} 1	$V_{R} = 600V$	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	-	200	μΑ
+	$I_F = 1A$, di/dt = 100A/ μ s, $V_{CC} = 30V$	$T_{\rm C} = 25^{\rm o}{\rm C}$ $T_{\rm C} = 25^{\rm o}{\rm C}$	-	19	-	ns
t _{rr}	$I_F = 4A$, $di/dt = 100A/\mu s$, $V_{CC} = 390V$	$T_C = 25^{\circ}C$	-	25	60	115
I _{rr}	$I_F = 4A$, di/dt = 100A/ μ s, $V_{CC} = 390V$	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	1.5	-	Α
Q_{rr}	$I_F = 4A$, $di/dt = 100A/\mu s$, $V_{CC} = 390V$	1 _C = 25 C	-	18	-	nC
W_{AVL}	Avalanche Energy (L = 40mH)		4	-	-	mJ

Test Circuit and Waveforms



t_{rr} WAVEFORMS AND DEFINITIONS

L = 40mH $R < 0.1\Omega$ $E_{AVL} = 1/2LI^2$ Q1 = IGBT (BVCES > DUT VR(AVL)) CURRENT v_{DD} SENSE v_{DD} DUT

- r

AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

Notes:
1: Pulse: Test Pulse width = 300μs, Duty Cycle = 2%

Typical Performance Characteristics

Figure 1. Typical Forward Voltage Drop vs. Forward Current

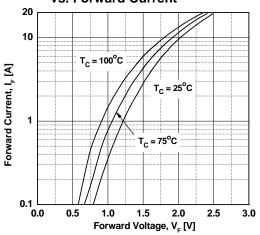


Figure 3. Typical Junction Capacitance

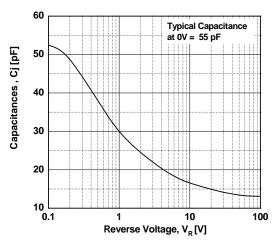


Figure 5. Typical Reverse Recovery Current vs. di/dt

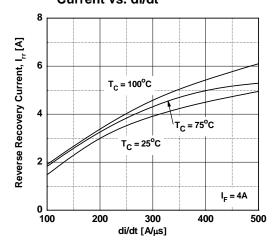


Figure 2. Typical Reverse Current vs.

Reverse Voltage

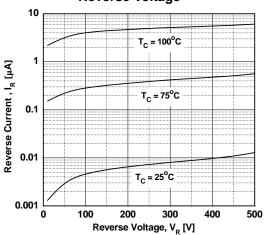


Figure 4. Typical Reverse Recovery Time vs. di/dt

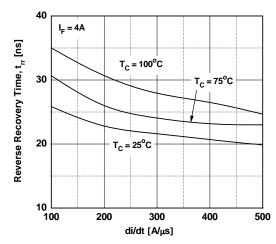
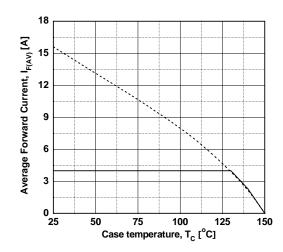
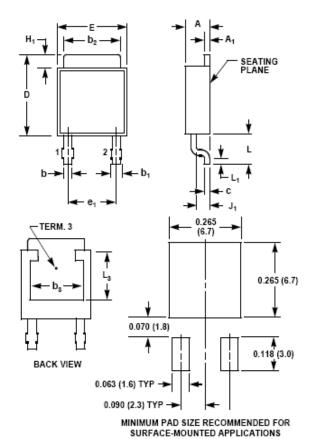




Figure 6. Forward Current Derating Curve

Mechanical Dimensions

D-PAK

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.086	0.094	2.19	2.38	-
A ₁	0.018	0.022	0.46	0.55	3, 4
b	0.028	0.032	0.72	0.81	3, 4
b ₁	0.033	0.040	0.84	1.01	3
b ₂	0.205	0.215	5.21	5.46	3, 4
b ₃	0.190	-	4.83	-	2
С	0.018	0.022	0.46	0.55	3, 4
D	0.270	0.290	6.86	7.36	-
E	0.250	0.265	6.35	6.73	-
e ₁	0.180 BSC		4.57 BSC		6
H ₁	0.035	0.045	0.89	1.14	-
J ₁	0.040	0.045	1.02	1.14	-
L	0.100	0.115	2.54	2.92	-
L ₁	0.020	-	0.51	-	3, 5
L ₃	0.170	-	4.32	-	2

NOTES:

- 1. No current JEDEC outline for this package.
- L₃ and b₃ dimensions establish a minimum mounting surface for terminal 3.
- 3. Dimension (without solder).
- 4. Add typically 0.002 inches (0.05mm) for solder plating.
- L₁ is the terminal length for soldering.
 Position of lead to be measured 0.090 inches (2.28mm) from bottom of dimension D.
- 7. Controlling dimension: Inch.
- 8. Revision 8 dated 5-99.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePUS™ CorePOWER™ CROSSVOLT™ CTL™

Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ *

Fairchild®

Fairchild Semiconductor® FACT Quiet Series™

FACT[®] FAST® FastvCore™ FlashWriter® * F-PFS™

Global Power ResourceSM Green FPS™

Green FPS™ e-Series™ GTO™

IntelliMAX™ ISOPLANAR™ MegaBuck™ MIČROCOUPLER™ MicroFET^{TI} MicroPak™ MillerDrive™ $MotionMax^{\mathsf{TM}}$ Motion-SPM™

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

OPTOLOGIC®

OPTOPLANAR®

Programmable Active Droop™ QFET

QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW /W /kW at a time™ SmartMax[™]

SMART START™ SPM[®] STEALTH** SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™

SYSTEM ® The Power Franchise® P wer franchise TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ μSérDes™

Ultra FRFET™ UniFFT™ VCXTM VisualMax™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild si

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification Product Status		Definition		
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 137