

MP1909 30V, 2.2MHz, 2A Half-Bridge Gate Driver in SOT583 Package

DESCRIPTION

The MP1909 is a high-frequency, 30V, halfbridge, N-channel power MOSFET driver. Its low-side and high-side driver channels are controlled by a signal input. Internal adaptive dead time control circuitry reduces the switching power loss and prevents shoot-through.

Both outputs are disabled when the EN pin is pulled low. The integrated bootstrap diode reduces external component count. Undervoltage lockout (UVLO) functionality protects the IC from operating at insufficient power supplies. Thermal shutdown protection functions can protect the IC from over-temperature conditions.

FEATURES

- Drives N-Channel MOSFET Half-Bridge
- Up to 50V V_{BST} Voltage
- 4.5V to 12V Gate Drive Voltage
- On-Chip Bootstrap Diode
- Up to 2.2MHz Switching Frequency
- One PWM Signal Generates Both Drives
- Low Quiescent Current
- 100% Duty Support
- UVLO for High-Side and Low-Side Gate Drives
- Available in an 8-Pin SOT583 (1.6mmx2.1mm) Package

APPLICATIONS

- Electronic Cigarettes
- Wireless Charging
- Drones
- Avionics DC/DC Converters
- Active-Clamp Forward Converters

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number*	Package	Top Marking	MSL
MP1909GTL	SOT583	See Below	1

* For Tape & Reel, add suffix –Z (e.g. MP1909GTL–Z).

TOP MARKING BFZY

LLL

BFZ: Product code of MP1909GTL Y: Year code LLL: Lot number

PACKAGE REFERENCE

Pin #	Name	Description
1	BST	Bootstrap. This is the positive power supply for the internal floating high-side MOSFET driver. Connect a bypass capacitor between the BST and SW pins.
2	PWM	Control signal input for the high-side and low-side drivers . Setting PWM to logic high turns on the high-side MOSFET; setting PWM to logic low turns on the low-side MOSFET.
3	EN	On/off control. Set EN high to turn on the IC; set EN low to turn it off.
4	VCC	Supply input. This pin supplies power to all the internal circuitry. Place a decoupling capacitor to ground, and close to this pin to ensure stable and clean supply.
5	DRVL	Low-side driver output.
6	GND	Chip ground.
7	SW	Switching node.
8	DRVH	Floating driver output.

PIN FUNCTIONS

ABSOLUTE MAXIMUM RATINGS (1)

Supply voltage (V _{CC})	0.3V to +15V
SW voltage (Vsw)	0.3V (-5V <10ns)
	. to +35V (45V <10ns)
BST voltage (V _{BST})	0.3V to +50V
BST to SW	0.3V to +15V
DRVH to SW0.3	V to (BST-SW) + 0.3V
DRVL to GND	0.3V to (V _{CC} + 0.3V)
EN, PWM	0.3V to +5.5V
Continuous power dissipa	tion (T _A = 25°C) ^{(2) (5)}
	2.2W
Junction temperature	150°C
Lead temperature	260°C
Storage temperature	65°C to +150°C

ESD Ratings

Human body model (HE	3M)	1000V
Charged device model	(CDM)	1000V

Recommended Operating Conditions ⁽³⁾

Thermal Resistance	Ө ЈА	θις
SOT583		
EV1909-TL-00A (5)	55	21 °C/W
JESD51-7 ⁽⁶⁾		60 °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX) T_A) / θ_{JA} . Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) 4.5V/12V is only a typical value for the supply voltage.
- 5) Measured on EV1909-TL-00A, 2-layer PCB.
- 6) The value of θ_{JA} given in this table is only valid for comparison with other packages and cannot be used for design purposes. These values were calculated in accordance with JESD51-7, and simulated on a specified JEDEC board. They do not represent the performance obtained in an actual application.

ELECTRICAL CHARACTERISTICS

 $V_{CC} = V_{BST} - V_{SW} = 12V$, $V_{EN} = 3.3V$, $V_{PWM} = 3.3V$, no load at DRVH and DRVL, $T_J = -40^{\circ}C$ to $+125^{\circ}C$ ⁽⁷⁾, typical value is tested at $T_J = 25^{\circ}C$, unless otherwise noted.

Parameter	arameter Symbol Condition		Min	Тур	Max	Units
Supply Current						
		$V_{EN} = 0$, SW = GND, $T_J = 25^{\circ}C$		100	165	μA
		$V_{EN} = 0$, SW = GND, T _J = -40°C to +125°C			180	μA
VCC snutdown current	ISHDN	$V_{EN} = 0$, SW float, $T_J = 25^{\circ}C$		50	100	μA
		$V_{EN} = 0$, SW float, T _J = -40°C to +125°C			120	μA
VCC quieseent ourrent	I	$PWM = 0, SW = GND, V_{EN} = 3.3V$		150	230	μA
VCC quiescent current	IDDQ1	PWM = 0, SW float, $V_{EN} = 3.3V$		100	170	μA
VCC operating current	DDQ2	$f_{SW} = 250 \text{kHz}, C_{LOAD} = 1 \text{nF}$		7.5	9.5	mA
Floating driver quiescent current	Ιβετα	PWM = high		110	170	μA
Leakage current	Ilk	BST = 35V, SW = 35V			1	μA
Inputs						
PWM high	V _{PWM_H}		2.2			V
PWM low	$V_{\text{PWM}_{L}}$				0.8	V
PWM hysteresis	VPWM_HYS			0.5		V
PWM leakage current	IPWM	No internal pull-up or pull-down, $V_{PWM} = 3.3V$	-1		+1	μA
Under-Voltage Protection						
VCC rising threshold	Vccr		3.6	4.1	4.6	V
VCC falling threshold	Vccf		3.6	3.8	4.2	V
(BST-SW) rising threshold	VBSTR		2.4	2.9	3.4	V
(BST-SW) falling threshold	VBSTF			2.8		V
EN input logic low	$V_{\text{EN}_{L}}$				0.7	V
EN input logic high	$V_{\text{EN}_{\text{H}}}$		1.5			V
EN hysteresis	$V_{\text{EN}_{\text{HYS}}}$			300		mV
EN internal pull-down resistance	R_{EN}			1		MΩ
EN turn-on delay	ten_on	BST - SW = 12V		3.6		μs
EN shutdown delay	t _{EN_OFF}			20		ns
Bootstrap Diode						
Bootstrap diode VF at 100µA	V _{F1}			0.2		V
Bootstrap diode VF at 100mA	V _{F2}			1.6		V
Bootstrap diode dynamic R	R⊳	At 100mA		13		Ω
Low-Side Gate Driver						
	Pour	$V_{PWM} = 0V, V_{CC} = 5V$		4		Ω
output resistance, sourcing	NOHL	$V_{PWM} = 0V, V_{CC} = 12V$		1.5		Ω
	IOHL ⁽⁸⁾	$V_{PWM} = 0V, V_{CC} = 12V$		2		А

ELECTRICAL CHARACTERISTICS (continued)

 $V_{CC} = V_{BST} - V_{SW} = 12V$, $V_{EN} = 3.3V$, $V_{PWM} = 3.3V$, no load at DRVH and DRVL, $T_J = -40^{\circ}C$ to $+125^{\circ}C$ ⁽⁷⁾, typical value is tested at $T_J = 25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
	Р	$V_{PWM} = 3.3V, V_{CC} = 5V$		1		Ω
Output resistance, sinking current	ROLL	V _{PWM} = 3.3V, V _{CC} = 12V		0.6		Ω
	Ioll ⁽⁸⁾	$V_{PWM} = 3.3V, V_{CC} = 12V$		4		Α
Output resistance, unbiased	Roul	Vcc = GND		250		kΩ
Floating Gate Driver						
	Pauro	$V_{PWM} = 3.3V$, $V_{BST} - V_{SW} = 5V$		4		Ω
Output resistance, source current	ГОНН	$V_{PWM} = 3.3V$, $V_{BST} - V_{SW} = 12V$		2		Ω
Output registeres, sink ourrest	Б	$V_{PWM} = 0V, V_{BST} - V_{SW} = 5V$		1.2		Ω
Output resistance, sink current	ROLH	$V_{PWM} = 0V, V_{BST} - V_{SW} = 12V$		0.6		Ω
Output resistance, unbiased	Rouh	V _{BST} - V _{SW} = 0V		250		kΩ
Switching Specifications (Low-Si	ide Gate D	river)	•	•	•	
Turn-off propagation delay, PWM rising to DRVL falling	tdlrf			30		ns
Turn-on propagation delay, PWM falling to DRVL rising	tdlfr			110		ns
DRVL rise time ⁽⁸⁾	t _{DRVL_R}	$C_L = 1nF$		10		ns
DRVL fall time (8)	tdrvl_f	C∟ = 1nF		6		ns
Switching Specifications (Floatin	g Gate Dri	ver)				
Turn-off propagation delay, PWM falling to DRVH falling	t DHFF			40		ns
Turn-on propagation delay, PWM rising to DRVH rising	t _{DHRR}			80		ns
DRVH rise time ⁽⁸⁾	t _{DRVH_R}	$C_L = 1nF$		10		ns
DRVH fall time ⁽⁸⁾	tdrvh_f	C∟ = 1nF		6		ns
Switching Specifications (Matchi	ng)					
Minimum input pulse width that changes the output ⁽⁸⁾	t _{PW}			50		ns
Thermal shutdown (8)	TSTD			150		°C
Thermal hysteresis (8)	T _{STD_HYS}			20		°C

Notes:

7) Not tested in production. Guaranteed by over-temperature correlation.

8) Guaranteed by design and engineering sample characterization.

TIMING DIAGRAM

TYPICAL PERFORMANCE CHARACTERISTICS

 V_{CC} = 12V, V_{SW} = 0V, T_A = 25°C, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $V_{CC} = 12V$, $V_{SW} = 0V$, $T_A = 25^{\circ}C$, unless otherwise noted.

Turn-Off Propagation Delay

Turn-On Propagation Delay PWM rising to DRVH rising

MP1909 Rev. 1.0 7/10/2020

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{CC} = 12V, V_{SW} = 0V, T_A = 25°C, unless otherwise noted.

FUNCTIONAL BLOCK DIAGRAM

OPERATION

Theory of Operation

The MP1909 can drive two N-channel MOSFETs in a synchronous buck or boost converter topology. It can work at a 12V gate drive voltage to minimize the external MOSFET's $R_{DS(ON)}$ and achieve higher efficiency. A single PWM input signal can generate the well-controlled high-side and low-side drivers.

100% Duty Cycle

The high-side driver can turn on with 100% duty cycle as long as the difference between V_{CC} and V_{IN} exceeds 3.4V.

Switch Shoot-Through Protection

Internal anti-shoot-through circuitry protects the high-side and low-side MOSFETs from turning on at the same time. Adaptive dead time control greatly reduces the dead time and switching power loss. When the PWM input goes high, the DRVL pin goes low. The time it takes for the low-side MOSFET (LS-FET) to turn off is determined by the total gate charge. The MP1909 monitors the LS-FET's V_{GS} and level shifts this voltage information to the high-side driver. The high-side driver does not turn on the high-side MOSFET (HS-FET) until the LS-FET is completely turned off.

Under-Voltage Lockout

When BST-SW goes below its under-voltage lockout (UVLO) threshold, the DRVH pin's output goes low to turn off the HS-FET.

When V_{CC} falls below its UVLO threshold, both the DRVH and DRVL outputs go low to turn off the MOSFETs.

Table 1 lists the operation of the HS-FET and LS-FET under different PWM and UVLO conditions.

EN	BST-SW Voltage	V _{cc} Voltage	PWM	DRVH	DRVL	Operating Conditions	
0	x x		х	250kΩ pull-down resistor	250kΩ pull-down resistor	Х	
	Above UVLO	Above UVLO	1	1	0		
	Above UVLO	Above UVLO	0	0	1	Normal operation	
1	Falls below UVLO	Above UVLO	1	0	0	Normal operation	
I	Falls below UVLO	Above UVLO	0	0	1		
	Above UVLO	Falls below UVLO	Х	0	0	Normal-to-tripped	
	Below UVLO	Falls below UVLO	Х	0	0	transition	

 Table 1: States of Driver Outputs under Different Conditions

Note:

9) "X" means not applicable.

APPLICATION INFORMATION

It is not recommended to add a resistor (R_{GATE}) between DRVH/DRVL and the MOSFET gate. If R_{GATE} is required to slow down the MOSFET's turn-on speed, a turn-off diode must be placed within the system. Figure 3 shows the turn-off diode circuit. This circuit significantly reduces the turn-off delay time, which reduces the risk of shoot-through.

Figure 3: Turn-Off Diode Circuit

PCB Layout Guidelines (10)

Proper PCB layout of the driver is very important. For the best results, refer to Figure 4 and follow the guidelines below:

- 1. Put the VCC capacitor close to VCC and GND pins.
- 2. Use wide PCB traces to connect the MP1909 to the GND pin.
- 3. Place the BST capacitor close to the BST and SW pins. A 4.7Ω BST resistor is recommended to reduce the spike voltage.
- 4. Use wide and short PCB traces to connect DRVH/DRVL to the MOSFET gate.

Note:

10) The recommended layout is based on the circuit on Figure 5.

Top Layer

Bottom Layer Figure 4: Recommended PCB Layout

TYPICAL APPLICATION CIRCUITS

PACKAGE INFORMATION

SOT583 (1.6mmx2.1mm)

TOP VIEW

FRONT VIEW

RECOMMENDED LAND PATTERN

NOTE:

 ALL DIMENSIONS ARE IN MILLIMETERS.
 PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
 DRAWING IS NOT TO SCALE.

CARRIER INFORMATION

Part Number	Package	Quantity/	Quantity/	Reel	Carrier	Carrier
	Description	Reel	Tube	Diameter	Tape Width	Tape Pitch
MP1909GTL-Z	SOT583	5000	N/A	7in	8mm	4mm

Revision History

Revision # Revision Date		Description	Pages Updated	
1.0	7/10/2020	Initial Release	-	

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.