

MOS FIELD EFFECT TRANSISTOR 2SK3814

SWITCHING N-CHANNEL POWER MOS FET

DESCRIPTION

The 2SK3814 is N-channel MOS Field Effect Transistor designed for high current switching applications.

FEATURES

• Super low on-state resistance

 $R_{DS(on)1} = 8.7 \text{ m}\Omega \text{ MAX.} \text{ (VGs} = 10 \text{ V, I}_D = 30 \text{ A)}$

 $R_{DS(on)2} = 10.5 \text{ m}\Omega \text{ MAX}. \text{ (Vgs} = 4.5 \text{ V, I}_D = 30 \text{ A)}$

• Low Ciss: Ciss = 5450 pF TYP.

ORDERING INFORMATION

PART NUMBER	PACKAGE		
2SK3814	TO-251 (MP-3)		
2SK3814-Z	TO-252 (MP-3Z)		

(TO-251)

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Drain to Source Voltage (Vss = 0 V)	Voss	60	V
Gate to Source Voltage (Vps = 0 V)	Vgss	±20	V
Drain Current (DC) (Tc = 25°C)	ID(DC)	±60	Α
Drain Current (pulse) Note1	I _{D(pulse)}	±240	Α
Total Power Dissipation (Tc = 25°C)	P _{T1}	84	W
Total Power Dissipation (T _A = 25°C)	P _{T2}	1.0	W
Channel Temperature	Tch	150	°C
Storage Temperature	T_{stg}	-55 to +150	°C
Single Avalanche Energy Note2	Eas	102	mJ
Repetitive Avalanche Current Note3	lar	32	Α
Repetitive Avalanche Energy Note3	Ear	102	mJ

(TO-252)

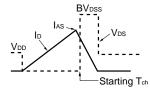
Notes 1. PW \leq 10 μ s, Duty Cycle \leq 1%

2. Starting T_{ch} = 25°C, V_{DD} = 30 V, R_G = 25 Ω , V_{GS} = 20 \rightarrow 0 V, L = 100 μ H

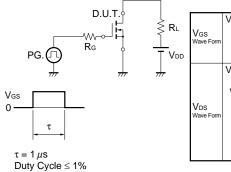
3. $T_{ch(peak)} \le 150^{\circ}C$, Rg = 25 Ω

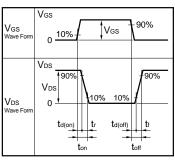
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.


ELECTRICAL CHARACTERISTICS (TA = 25°C)

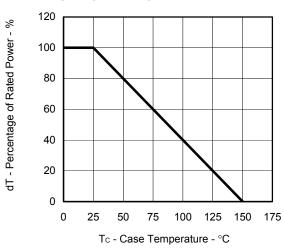
CHARACTERISTICS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 60 V, V _{GS} = 0 V			10	μΑ
Gate Leakage Current	Igss	V _{GS} = ±20 V, V _{DS} = 0 V			±100	nA
Gate Cut-off Voltage	V _{GS(off)}	V _{DS} = 10 V, I _D = 1 mA	1.5	2.0	2.5	V
Forward Transfer Admittance Note	y fs	V _{DS} = 10 V, I _D = 30 A	22	44		S
Drain to Source On-state Resistance Note	RDS(on)1	V _{GS} = 10 V, I _D = 30 A		7.0	8.7	mΩ
	RDS(on)2	V _{GS} = 4.5 V, I _D = 30 A		7.9	10.5	mΩ
Input Capacitance	Ciss	V _{DS} = 10 V		5450		pF
Output Capacitance	Coss	V _{GS} = 0 V		550		pF
Reverse Transfer Capacitance	Crss	f = 1 MHz		350		pF
Turn-on Delay Time	t _{d(on)}	V _{DD} = 30 V, I _D = 30 A		23		ns
Rise Time	tr	V _{GS} = 10 V		8.5		ns
Turn-off Delay Time	t _{d(off)}	R _G = 0 Ω		85		ns
Fall Time	tr			7.7		ns
Total Gate Charge	QG	V _{DD} = 48 V		95		nC
Gate to Source Charge	Qgs	V _{GS} = 10 V		17		nC
Gate to Drain Charge	Q _{GD}	I _D = 60 A		26		nC
Body Diode Forward Voltage Note	V _{F(S-D)}	I _F = 60 A, V _{GS} = 0 V		0.95	1.5	V
Reverse Recovery Time	trr	I _F = 60 A, V _{GS} = 0 V		36		ns
Reverse Recovery Charge	Qrr	di/dt = 100 A/μs		40		nC


Note Pulsed

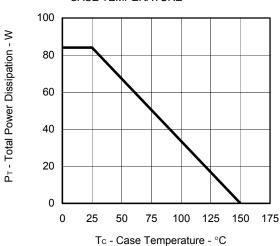

TEST CIRCUIT 1 AVALANCHE CAPABILITY

$V_{GS} = 20 \rightarrow 0 \text{ V}$ $V_{GS} = 20 \rightarrow 0 \text{ V}$ V_{DD} V_{DD} V_{DD} V_{DD} V_{DD}

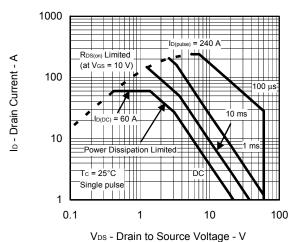
TEST CIRCUIT 2 SWITCHING TIME

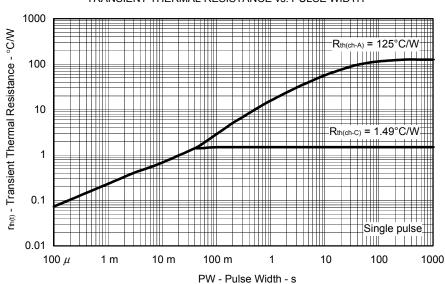


TEST CIRCUIT 3 GATE CHARGE

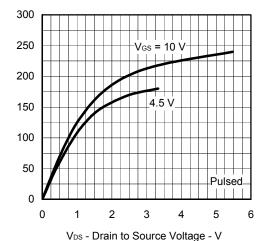

$$\begin{array}{c|c} D.U.T. \\ I_G = 2 \stackrel{m}{\text{M}} \\ \hline \\ PG. \\ \end{array} \begin{array}{c} S \\ 50 \\ \Omega \\ \end{array} \begin{array}{c} RL \\ \hline \\ V_{DD} \\ \end{array}$$

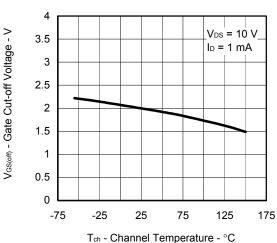
TYPICAL CHARACTERISTICS (TA = 25°C)


DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA

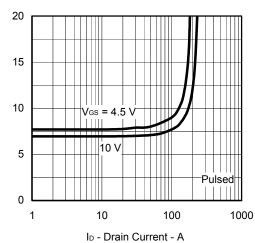

TOTAL POWER DISSIPATION vs. CASE TEMPERATURE

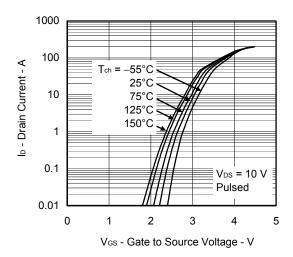
FORWARD BIAS SAFE OPERATING AREA

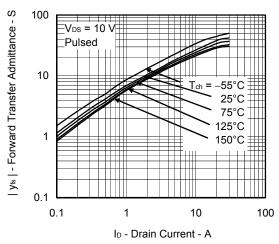

TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH

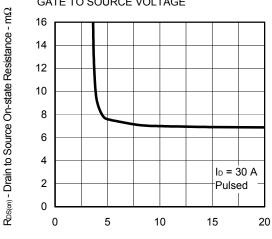

3

lo - Drain Current - A


DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE

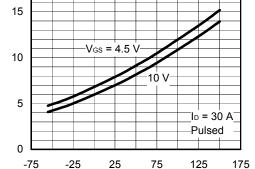

GATE CUT-OFF VOLTAGE vs. CHANNEL TEMPERATURE


DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT


FORWARD TRANSFER CHARACTERISTICS

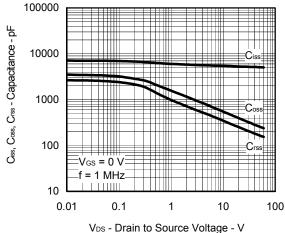
FORWARD TRANSFER ADMITTANCE vs. DRAIN CURRENT

DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE

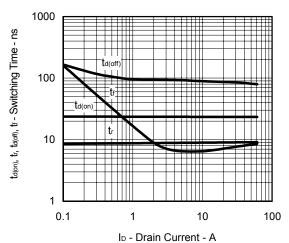


V_{GS} - Gate to Source Voltage - V

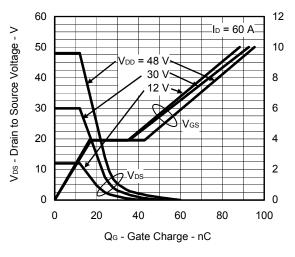
R_{DS(m)} - Drain to Source On-state Resistance - mΩ

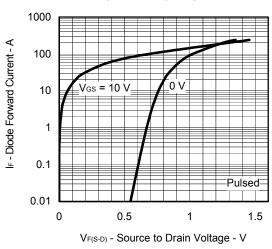

R_{DS(on)} - Drain to Source On-state Resistance - mΩ

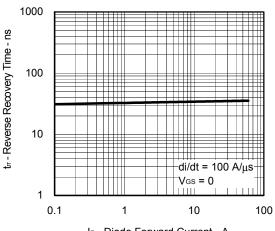
DRAIN TO SOURCE ON-STATE RESISTANCE vs. CHANNEL TEMPERATURE 20



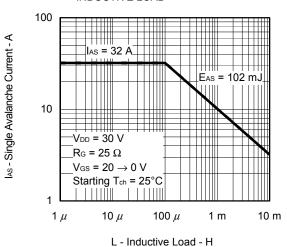
Tch - Channel Temperature - °C

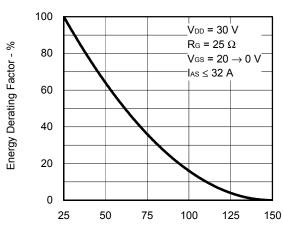

CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE


SWITCHING CHARACTERISTICS


DYNAMIC INPUT/OUTPUT CHARACTERISTICS

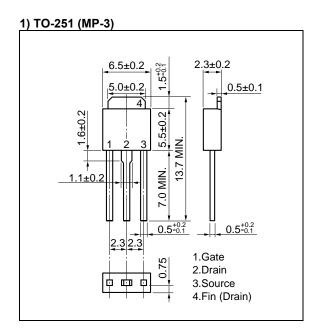
SOURCE TO DRAIN DIODE FORWARD VOLTAGE

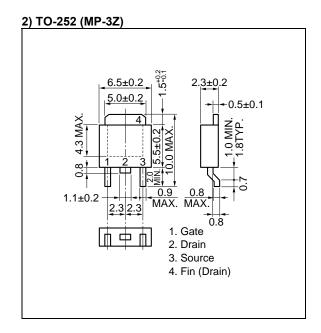

REVERSE RECOVERY TIME vs. DIODE FORWARD CURRENT


IF - Diode Forward Current - A

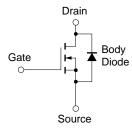
Ves - Gate to Source Voltage - V

SINGLE AVALANCHE CURRENT vs. INDUCTIVE LOAD


SINGLE AVALANCHE ENERGY DERATING FACTOR



Starting T_{ch} - Starting Channel Temperature - $^{\circ}\text{C}$



PACKAGE DRAWINGS (Unit: mm)

EQUIVALENT CIRCUIT

Remark Strong electric field, when exposed to this device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred.

Data Sheet D16740EJ1V0DS 7

- The information in this document is current as of September, 2004. The information is subject to
 change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
 sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
 all products and/or types are available in every country. Please check with an NEC Electronics sales
 representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).