16-bit dual supply translating transceiver with configurable voltage translation; 3-state

Rev. 01 — 14 October 2009

Product data sheet

1. General description

The 74AVCH16T245 is a 16-bit transceiver with bidirectional level voltage translation and 3-state outputs. The device can be used as two 8-bit transceivers or as a 16-bit transceiver. It has dual supplies ($V_{CC(A)}$ and $V_{CC(B)}$) for voltage translation and two 8-bit input-output ports (nAn, nBn) each with its own output enable (n \overline{OE}) and send/receive (nDIR) input for direction control. $V_{CC(A)}$ and $V_{CC(B)}$ can be independently supplied at any voltage between 0.8 V and 3.6 V making the device suitable for low voltage translation between any of the following voltages: 0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V. A HIGH on nDIR selects transmission from nAn to nBn while a LOW on nDIR selects transmission from nBn to nAn. A HIGH on n \overline{OE} causes the outputs to assume a high-impedance OFF-state

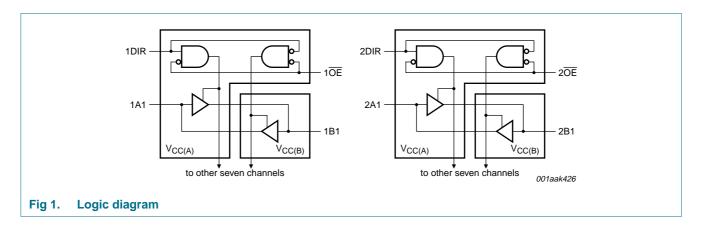
The device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, both A and B outputs are in the high-impedance OFF-state. The bus-hold circuitry on the powered-up side always stays active.

The 74AVCH16T245 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

2. Features

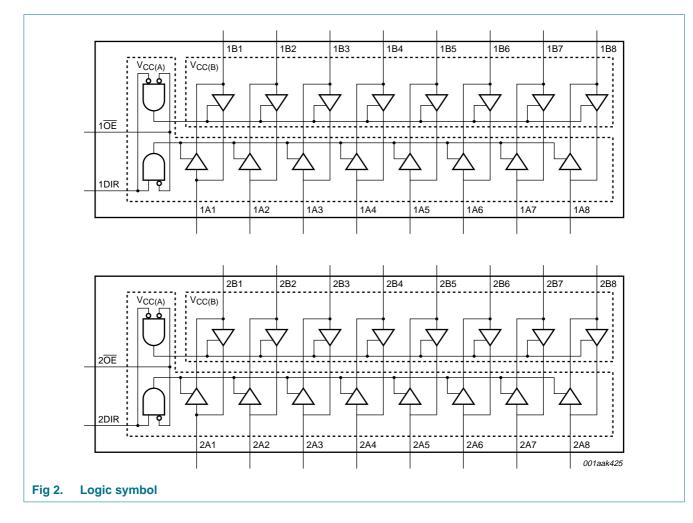
- Wide supply voltage range:
 - V_{CC(A)}: 0.8 V to 3.6 V
 - ◆ V_{CC(B)}: 0.8 V to 3.6 V
- Complies with JEDEC standards:
 - ◆ JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - ◆ JESD8-7 (1.2 V to 1.95 V)
 - ◆ JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114E Class 3B exceeds 8000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101C exceeds 1000 V
- Maximum data rates:
 - ◆ 380 Mbit/s (≥ 1.8 V to 3.3 V translation)

16-bit dual supply translating transceiver; 3-state


- ◆ 200 Mbit/s (≥ 1.1 V to 3.3 V translation)
- 200 Mbit/s (≥ 1.1 V to 2.5 V translation)
- ◆ 200 Mbit/s (≥ 1.1 V to 1.8 V translation)
- ◆ 150 Mbit/s (≥ 1.1 V to 1.5 V translation)
- 100 Mbit/s (≥ 1.1 V to 1.2 V translation)
- Suspend mode
- Bus hold on data inputs
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from –40 °C to +85 °C and –40 °C to +125 °C

3. Ordering information

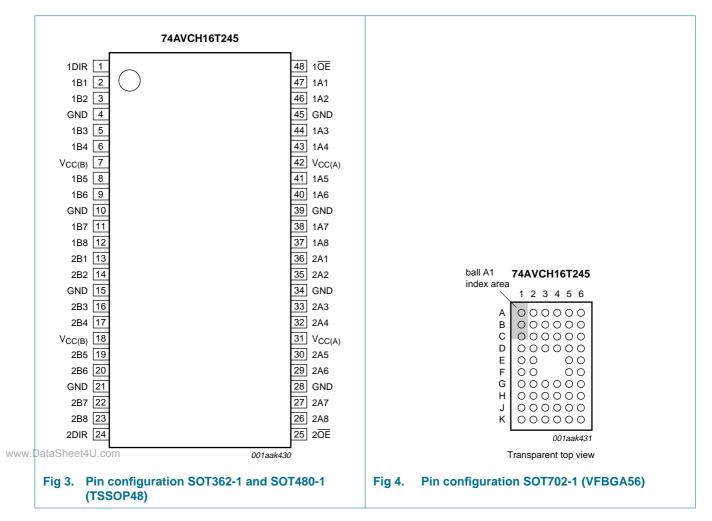
Ordering information Table 1. Package Type number Temperature range Name Description Version -40 °C to +85 °C 74AVCH16T245DGG TSSOP48 plastic thin shrink small outline package; 48 SOT362-1 leads; body width 6.1 mm 74AVCH16T245DGV -40 °C to +85 °C TSSOP48^[1] plastic thin shrink small outline package; 48 SOT480-1 leads; body width 4.4 mm; lead pitch 0.4 mm 74AVCH16T245EV -40 °C to +125 °C VFBGA56 plastic very thin fine-pitch ball grid array package; SOT702-1 56 balls; body $4.5 \times 7 \times 0.65$ mm 74AVCH16T245BQ -40 °C to +125 °C HUQFN60U plastic thermal enhanced ultra thin quad flat SOT1025-1 package; no leads; 60 terminals; UTLP based; body $4 \times 6 \times 0.55$ mm


www. [pt]ta Salsotkinowmas TVSOP48.

4. Functional diagram

74AVCH16T245

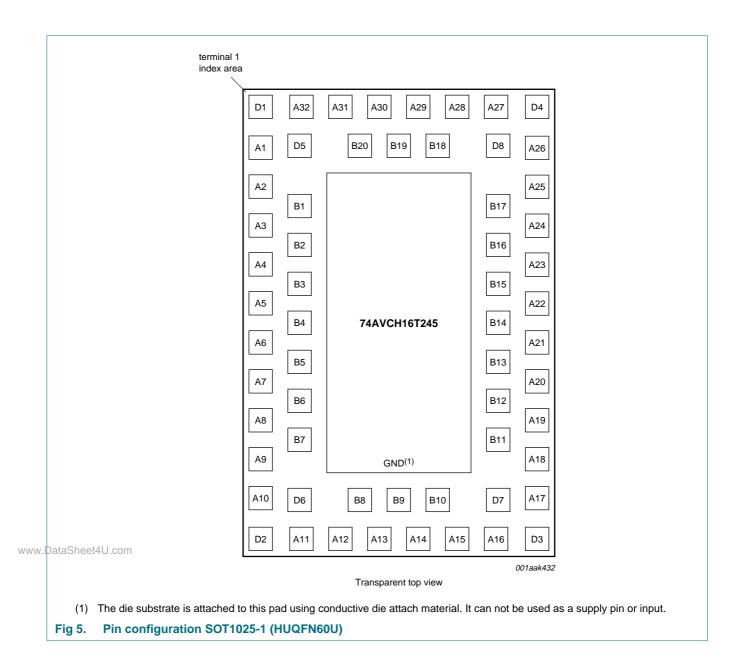
16-bit dual supply translating transceiver; 3-state



74AVCH16T245

16-bit dual supply translating transceiver; 3-state

5. Pinning information


5.1 Pinning

74AVCH16T245_1 Product data sheet

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

16-bit dual supply translating transceiver; 3-state

5.2 Pin description

Symbol	Pin			Description
	SOT362-1 and SOT480-1	SOT702-1	SOT1025-1	-
1DIR, 2DIR	1, 24	A1, K1	A30, A13	direction control
1B1 to 1B8	2, 3, 5, 6, 8, 9, 11, 12	B2, B1, C2, C1, D2, D1, E2, E1	B20, A31, D5, D1, A2, B2, B3, A5	data input or output
2B1 to 2B8	13, 14, 16, 17, 19, 20, 22, 23	F1, F2, G1, G2, H1, H2, J1, J2	A6, B5, B6, A9, D2, D6, A12, B8	data input or output
GND ^[1]	4, 10, 15, 21, 28, 34, 39, 45	B3, D3, G3, J3, J4, G4, D4, B4	A32, A3, A8, A11, A16, A19, A24, A27	ground (0 V)
V _{CC(B)}	7, 18	C3, H3	A1, A10	supply voltage B (nBn inputs are referenced to $V_{CC(B)}$)
$1\overline{OE}, 2\overline{OE}$	48, 25	A6, K6	A29, A14	output enable input (active LOW)
1A1 to 1A8	47, 46, 44, 43, 41, 40, 38, 37	B5, B6, C5, C6, D5, D6, E5, E6	B18, A28, D8, D4, A25, B16, B15, A22	data input or output
2A1 to 2A8	36, 35, 33, 32, 30, 29, 27, 26	F6, F5, G6, G5, H6, H5, J6, J5	A21, B13, B12, A18, D3, D7, A15, B10	data input or output
V _{CC(A)}	31, 42	C4, H4	A17, A26	supply voltage A (nAn, $n\overline{OE}$ and nDIR inputs are referenced to $V_{CC(A)}$)
n.c.	-	A2, A3, A4, A5, K2, K3, K4, K5	A4, A7, A20, A23, B1, B4, B7, B9, B11, B14, B17, B19	not connected

[1] All GND pins must be connected to ground (0 V).

6. Functional description

Table 3. $\overset{\text{D}}{\overset{\text{d}}{\text{Function table}}}$

W

Supply voltage	Input		Input/output ^[3]	Input/output ^[3]		
V _{CC(A)} , V _{CC(B)}	nOE ^[2]	nDIR ^[2]	nAn ^[2]	nBn[2]		
0.8 V to 3.6 V	L	L	nAn = nBn	input		
0.8 V to 3.6 V	L	Н	input	nBn = nAn		
0.8 V to 3.6 V	Н	Х	Z	Z		
GND ^[3]	Х	Х	Z	Z		

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

[2] The nAn, nDIR and n \overline{OE} input circuit is referenced to V_{CC(A)}; The nBn input circuit is referenced to V_{CC(B)}.

[3] If at least one of $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode.

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		-0.5	+4.6	V
V _{CC(B)}	supply voltage B		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode	<u>[1][2][3]</u> –0.5	$V_{CCO} + 0.5$	V
		Suspend or 3-state mode	<u>[1]</u> –0.5	+4.6	V
lo	output current	$V_{O} = 0 V$ to V_{CC}	[2] _	±50	mA
I _{CC}	supply current	$I_{CC(A)}$ or $I_{CC(B)}$	-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C;			
		TSSOP48 package	<u>[4]</u> _	500	mW
		VFBGA56 package	<u>[5]</u> _	1000	mW
		HUQFN60U package	<u>[5]</u> _	1000	mW

[1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] V_{CCO} is the supply voltage associated with the output port.

[3] V_{CCO} + 0.5 V should not exceed 4.6 V.

[4] Above 60 $^\circ\text{C}$ the value of P_tot derates linearly with 5.5 mW/K.

[5] Above 70 °C the value of P_{tot} derates linearly with 1.8 mW/K.

www. 8tash Recommended operating conditions

Table 5. Recommended operating conditions

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1 0				
$ \begin{array}{c c} V_{CC(B)} & \text{supply voltage B} & 0.8 & 3.6 \\ \hline V_{I} & \text{input voltage} & 0 & 3.6 \\ \hline V_{O} & \text{output voltage} & \underline{Active \ mode} & \underline{11} \ 0 & V_{CCO} \\ \hline Suspend \ or \ 3-state \ mode} & 0 & 3.6 \\ \hline T_{amb} & \text{ambient temperature} & -40 & +125 \\ \hline \end{array} $	Symbol	Parameter	Conditions	Min	Max	Unit
$ \begin{array}{c c} V_{I} & \mbox{input voltage} & 0 & 3.6 \\ \hline V_{O} & \mbox{output voltage} & \\ \hline & Active mode & \mbox{[1]} & 0 & V_{CCC} \\ \hline & Suspend or 3-state mode & 0 & 3.6 \\ \hline & T_{amb} & \mbox{ambient temperature} & -40 & +125 \\ \hline & & & \end{array} $	V _{CC(A)}	supply voltage A		0.8	3.6	V
Vooutput voltageActive mode[1] 0VocconstructionVoambient temperature03.6Tambambient temperature-40+125	V _{CC(B)}	supply voltage B		0.8	3.6	V
Non-on-on-on-on-on-on-on-on-on-on-on-on-o	VI	input voltage		0	3.6	V
T _{amb} ambient temperature -40 +125	Vo	output voltage	Active mode	<u>[1]</u> 0	V _{cco}	V
			Suspend or 3-state mode	0	3.6	V
$\Delta t/\Delta V$ input transition rise and fall rate $V_{CCI} = 0.8 V$ to 3.6 V [2] - 5	T _{amb}	ambient temperature		-40	+125	°C
	$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CCI} = 0.8 V \text{ to } 3.6 V$	[2] _	5	ns/V

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the input port.

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

9. Static characteristics

Table 6.	Typical s	tatic ch	aracteris	tics at T _a	_{mb} = 25 °C[1][2]	

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = -1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$	-	0.69	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 1.5 mA; $V_{CC(A)} = V_{CC(B)} = 0.8 V$	-	0.07	-	V
lı	input leakage current	nDIR, n \overline{OE} input; V _I = 0 V or 3.6 V; V _{CC(A)} = V _{CC(B)} = 0.8 V to 3.6 V	-	±0.025	±0.25	μΑ
I _{BHL}	bus hold LOW current	A or B port; $V_I = 0.42 V$; $V_{CC(A)} = V_{CC(B)} = 1.2 V$	[3] _	26	-	μΑ
I _{BHH}	bus hold HIGH current	A or B port; $V_I = 0.78 V$; $V_{CC(A)} = V_{CC(B)} = 1.2 V$	[4] _	-24	-	μΑ
I _{BHLO}	bus hold LOW overdrive current	A or B port; $V_{CC(A)} = V_{CC(B)} = 1.2 V$	<u>[5]</u> _	27	-	μA
I _{BHHO}	bus hold HIGH overdrive current	A or B port; $V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	<u>[6]</u> _	-26	-	μA
I _{OZ}	OFF-state output current	A or B port; $V_O = 0$ V or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 3.6$ V	[7] -	±0.5	±2.5	μA
		suspend mode A port; $V_O = 0 V \text{ or } V_{CCO}$; $V_{CC(A)} = 3.6 V$; $V_{CC(B)} = 0 V$	<u>[7]</u> -	±0.5	±2.5	μΑ
		suspend mode B port; $V_O = 0 V$ or V_{CCO} ; $V_{CC(A)} = 0 V$; $V_{CC(B)} = 3.6 V$	[7] -	±0.5	±2.5	μA
I _{OFF}	power-off leakage current	A port; V ₁ or V ₀ = 0 V to 3.6 V; V _{CC(A)} = 0 V; V _{CC(B)} = 0.8 V to 3.6 V	-	±0.1	±1	μA
		B port; V ₁ or V ₀ = 0 V to 3.6 V; V _{CC(B)} = 0 V; V _{CC(A)} = 0.8 V to 3.6 V	-	±0.1	±1	μA
C _I DataSheet	input capacitance 4U.com	nDIR, n \overline{OE} input; V _I = 0 V or 3.3 V; V _{CC(A)} = V _{CC(B)} = 3.3 V	-	2.0	-	pF
C _{I/O}	input/output capacitance	A and B port; $V_O = 3.3$ V or 0 V; $V_{CC(A)} = V_{CC(B)} = 3.3$ V	-	4.5	-	pF

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the data input port.

[3] The bus hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_I to GND and then raising it to V_{IL} max.

[4] The bus hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_I to V_{CC} and then lowering it to V_{IH} min.

[5] An external driver must source at least I_{BHLO} to switch this node from LOW to HIGH.

[6] An external driver must sink at least I_{BHHO} to switch this node from HIGH to LOW.

[7] For I/O ports, the parameter I_{OZ} includes the input leakage current.

WWW

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

Symbol	Parameter	Conditions	–40 °C te	o +85 °C	–40 °C to	o +125 °C	Un
			Min	Max	Min	Max	
V _{IH}	HIGH-level	data input	·				
	input voltage	$V_{CCI} = 0.8 V$	$0.70V_{CCI}$	-	0.70V _{CCI}	-	V
		$V_{CCI} = 1.1 \text{ V to } 1.95 \text{ V}$	$0.65V_{CCI}$	-	0.65V _{CCI}	-	V
		$V_{CCI} = 2.3 \text{ V}$ to 2.7 V	1.6	-	1.6	-	V
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2	-	2	-	V
		nDIR, nOE input					
	LOW-level input voltage	$V_{CC(A)} = 0.8 V$	0.70V _{CC(A)}	-	0.70V _{CC(A)}	-	V
		$V_{CC(A)} = 1.1 \text{ V to } 1.95 \text{ V}$	0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
		$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6	-	1.6	-	V
		$V_{CC(A)} = 3.0 \text{ V to } 3.6 \text{ V}$	2	-	2	-	V
V _{IL}	LOW-level	data input					
	input voltage	$V_{CCI} = 0.8 V$	-	0.30V _{CCI}	-	0.30V _{CCI}	V
		$V_{CCI} = 1.1 \text{ V to } 1.95 \text{ V}$	-	0.35V _{CCI}	-	0.35V _{CCI}	V
		$V_{CCI} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	-	0.7	-	0.7	V
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	0.8	-	0.8	V
		nDIR, nOE input					
		$V_{CC(A)} = 0.8 V$	-	0.30V _{CC(A)}	-	0.30V _{CC(A)}	V
		$V_{CC(A)} = 1.1 \text{ V to } 1.95 \text{ V}$	-	$0.35V_{CC(A)}$	-	0.35V _{CC(A)}	V
		$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$	-	0.7	-	0.7	V
		$V_{CC(A)} = 3.0 \text{ V to } 3.6 \text{ V}$	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH} \text{ or } V_{IL}$					
DataSheet4	output ₄voltage	$I_{O} = -100 \ \mu\text{A};$ $V_{CC(A)} = V_{CC(B)} = 0.8 \ V \text{ to } 3.6 \ V$	V _{CCO} – 0.1	-	$V_{CCO}-0.1$	-	V
		$I_O = -3 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	0.85	-	0.85	-	V
		$ I_O = -6 \text{ mA}; \\ V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V} $	1.05	-	1.05	-	V
		$\label{eq:loss} \begin{array}{l} I_{O}=-8 \text{ mA};\\ V_{CC(A)}=V_{CC(B)}=1.65 \text{ V} \end{array}$	1.2	-	1.2	-	V
		$\label{eq:local_local_state} \begin{split} I_{O} &= -9 \text{ mA};\\ V_{CC(A)} &= V_{CC(B)} = 2.3 \text{ V} \end{split}$	1.75	-	1.75	-	V
		$\label{eq:IO} \begin{array}{l} I_{O}=-12 \text{ mA};\\ V_{CC(A)}=V_{CC(B)}=3.0 \text{ V} \end{array}$	2.3	-	2.3	-	V

Table 7. Static characteristics [1][2]

At recommended operating conditions: voltages are referenced to GND (around = 0 V)

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

Symbol	Parameter	Conditions		–40 °C t	:o +85 °C	–40 °C to	o +125 °C	
				Min	Max	Min	Max	
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	output voltage	$I_{O} = 100 \ \mu A;$ $V_{CC(A)} = V_{CC(B)} = 0.8 \ V \text{ to } 3.6 \ V$		-	0.1	-	0.1	
		$I_{O} = 3 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$		-	0.25	-	0.25	
		$I_{O} = 6 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$		-	0.35	-	0.35	
		I _O = 8 mA; V _{CC(A)} = V _{CC(B)} = 1.65 V		-	0.45	-	0.45	
		$I_{O} = 9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$		-	0.55	-	0.55	
		$\label{eq:loss} \begin{array}{l} I_O = 12 \text{ mA}; \\ V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V} \end{array}$		-	0.7	-	0.7	
lı	input leakage current	nDIR, n \overline{OE} input; V ₁ = 0 V or 3.6 V; V _{CC(A)} = V _{CC(B)} = 0.8 V to 3.6 V		-	±1	-	±5	
I _{BHL}	bus hold	A or B port	[3]					
	LOW current	$V_{I} = 0.49 V; V_{CC(A)} = V_{CC(B)} = 1.4 V$		15	-	15	-	
		$V_{I} = 0.58 V;$ $V_{CC(A)} = V_{CC(B)} = 1.65 V$		25	-	25	-	
		$V_{I} = 0.70 \text{ V}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$		45	-	45	-	
		$V_{I} = 0.80 \text{ V}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$		100	-	90	-	
I _{BHH}	bus hold	A or B port	<u>[4]</u>					
	HIGH current	$V_{I} = 0.91 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$		-15	-	-15	-	
		$V_{I} = 1.07 V;$ $V_{CC(A)} = V_{CC(B)} = 1.65 V$		-25	-	-25	-	
		$V_{I} = 1.60 \text{ V}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$		-45	-	-45	-	
DataSheet	4U.com	$V_{I} = 2.00 \text{ V}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$		-100	-	-100	-	
I _{BHLO}	bus hold	A or B port	[5]					
	LOW overdrive	$V_{CC(A)} = V_{CC(B)} = 1.6 V$		125	-	125	-	
	current	$V_{CC(A)} = V_{CC(B)} = 1.95 V$		200	-	200	-	
		$V_{CC(A)} = V_{CC(B)} = 2.7 V$		300	-	300	-	
		$V_{CC(A)} = V_{CC(B)} = 3.6 V$		500	-	500	-	
I _{BHHO}	bus hold	A or B port	[6]					
	HIGH overdrive	$V_{CC(A)} = V_{CC(B)} = 1.6 V$		-125	-	-125	-	
	current	$V_{CC(A)} = V_{CC(B)} = 1.95 V$		-200	-	-200	-	
		$V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V}$		-300	-	-300	-	
		$V_{CC(A)} = V_{CC(B)} = 3.6 V$		-500	-	-500	-	
I _{OZ}	OFF-state output	A or B port; $V_O = 0$ V or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 3.6$ V	<u>[7]</u>	-	±5	-	±30	
	current	suspend mode A port; $V_O = 0 V \text{ or } V_{CCO}; V_{CC(A)} = 3.6 V;$ $V_{CC(B)} = 0 V$	[7]	-	±5	-	±30	
		suspend mode B port; $V_O = 0 V \text{ or } V_{CCO}; V_{CC(A)} = 0 V;$ $V_{CC(B)} = 3.6 V$	[7]	-	±5	-	±30	

Table 7. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

74AVCH16T245_1

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

Symbol	Parameter	Conditions	_40 °C t	:o +85 °C	–40 °C to	o +125 °C	Uni
			Min	Max	Min	Max	
I _{OFF}	power-off leakage	A port; V ₁ or V _O = 0 V to 3.6 V; V _{CC(A)} = 0 V; V _{CC(B)} = 0.8 V to 3.6 V	-	±5	-	±30	μA
	current	B port; V ₁ or V _O = 0 V to 3.6 V; V _{CC(B)} = 0 V; V _{CC(A)} = 0.8 V to 3.6 V	-	±5	-	±30	μΑ
l _{cc}	supply	A port; $V_I = 0$ V or V_{CCI} ; $I_O = 0$ A					
	current	$V_{CC(A)} = 0.8 V \text{ to } 3.6 V;$ $V_{CC(B)} = 0.8 V \text{ to } 3.6 V$	-	30	-	125	μA
		$V_{CC(A)} = 1.1 V \text{ to } 3.6 V;$ $V_{CC(B)} = 1.1 V \text{ to } 3.6 V$	-	25	-	100	μA
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	-	25	-	100	μΑ
		$V_{CC(A)} = 0 V; V_{CC(B)} = 3.6 V$	-5	-	-20	-	μA
		B port; $V_I = 0$ V or V_{CCI} ; $I_O = 0$ A					
		$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	30	-	125	μA
		$V_{CC(A)} = 1.1 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	25	-	100	μA
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	-5	-	-20	-	μΑ
		$V_{CC(A)} = 0 V; V_{CC(B)} = 3.6 V$	-	25	-	100	μΑ
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI} ; $V_{CC(A)} = 0.8$ V to 3.6 V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	55	-	185	μA
)ataSheet4	ŧU.com	A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_{O} = 0$ A; $V_{I} = 0$ V or V_{CCI} ; $V_{CC(A)} = 1.1$ V to 3.6 V; $V_{CC(B)} = 1.1$ V to 3.6 V	-	45	-	150	μA

Table 7. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

[1] V_{CCO} is the supply voltage associated with the output port.

- [2] V_{CCI} is the supply voltage associated with the data input port.
- [3] The bus hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_I to GND and then raising it to V_{IL} max.
- [4] The bus hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_I to V_{CC} and then lowering it to V_{IH} min.
- [5] An external driver must source at least $I_{\mbox{\scriptsize BHLO}}$ to switch this node from LOW to HIGH.
- [6] An external driver must sink at least $I_{\mbox{\scriptsize BHHO}}$ to switch this node from HIGH to LOW.
- [7] For I/O ports, the parameter I_{OZ} includes the input leakage current.

Table 8.Typical total supply current $(I_{CC(A)} + I_{CC(B)})$

V _{CC(A)}	V _{CC(B)}									
	0 V	0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V			
0 V	0	0.1	0.1	0.1	0.1	0.1	0.1	μA		
0.8 V	0.1	0.1	0.1	0.1	0.1	0.3	1.6	μΑ		
1.2 V	0.1	0.1	0.1	0.1	0.1	0.1	0.8	μΑ		
1.5 V	0.1	0.1	0.1	0.1	0.1	0.1	0.4	μA		

74AVCH16T245 1

WWW

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

Table 8. Typicalcontinued total supply current (I _{CC(A)} + I _{CC(B)})continued										
V _{CC(A)}	V _{CC(B)}	V _{CC(B)}								
	0 V	0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V			
1.8 V	0.1	0.1	0.1	0.1	0.1	0.1	0.2	μA		
2.5 V	0.1	0.3	0.1	0.1	0.1	0.1	0.1	μA		
3.3 V	0.1	1.6	0.8	0.4	0.2	0.1	0.1	μA		

10. Dynamic characteristics

Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25 \ ^{\circ}C \ \underline{[1][2]}$ Table 9.

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions			V _{CC(A)} =	V _{CC(B)}			Uni
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
C _{PD}	power dissipation capacitance	A port: (direction A to B); output enabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		A port: (direction A to B); output disabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		A port: (direction B to A); output enabled	9	9.7	9.8	10.3	11.7	13.7	pF
		A port: (direction B to A); output disabled	0.6	0.6	0.6	0.7	0.7	0.7	pF
		B port: (direction A to B); output enabled	9	9.7	9.8	10.3	11.7	13.7	pF
		B port: (direction A to B); output disabled	0.6	0.6	0.6	0.7	0.7	0.7	pF
		B port: (direction B to A); output enabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
DataSheet4	4U.com	B port: (direction B to A); output disabled	0.2	0.2	0.2	0.2	0.3	0.4	pF

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 $f_o =$ output frequency in MHz;

 C_L = load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

[2] $f_i = 10 \text{ MHz}$; $V_I = \text{GND}$ to V_{CC} ; $t_r = t_f = 1 \text{ ns}$; $C_L = 0 \text{ pF}$; $R_L = \infty \Omega$.

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

Symbol Paramo	Parameter	Conditions	V _{CC(B)}						
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
t _{pd}	t _{pd} propagation delay	nAn to nBn	14.4	7.0	6.2	6.0	5.9	6.0	ns
		nBn to nAn	14.4	12.4	12.1	11.9	11.8	11.8	ns
t _{dis}	disable time	nOE to nAn	16.2	16.2	16.2	16.2	16.2	16.2	ns
		nOE to nBn	17.6	10.0	9.0	9.1	8.7	9.3	ns
t _{en}	enable time	nOE to nAn	21.9	21.9	21.9	21.9	21.9	21.9	ns
		nOE to nBn	22.2	11.1	9.8	9.4	9.4	9.6	ns

Table 10. Typical dynamic characteristics at $V_{CC(A)} = 0.8 \text{ V}$ and $T_{amb} = 25 \text{ °C } [1]$ Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7

[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 11. Typical dynamic characteristics at $V_{CC(B)} = 0.8$ V and $T_{amb} = 25 \degree C$ [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7

Symbol	Parameter	Conditions	V _{CC(A)}						
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
t _{pd}	t _{pd} propagation delay	nAn to nBn	14.4	12.4	12.1	11.9	11.8	11.8	ns
		nBn to nAn	14.4	7.0	6.2	6.0	5.9	6.0	ns
t _{dis}	disable time	nOE to nAn	16.2	5.9	4.4	4.2	3.1	3.5	ns
		nOE to nBn	17.6	14.2	13.7	13.6	13.3	13.1	ns
t _{en}	enable time	nOE to nAn	21.9	6.4	4.4	3.5	2.6	2.3	ns
		nOE to nBn	22.2	17.7	17.2	17.0	16.8	16.7	ns

[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

Symbol	Parameter	Parameter	Conditions					Vc	C(B)					ι
			1.2 V :	± 0.1 V	1.5 V :	± 0.1 V	1.8 V ±	- 0.15 V	2.5 V :	± 0.2 V	3.3 V	± 0.3 V		
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
V _{CC(A)} =	1.1 V to 1.3 V													
t _{pd}	propagation	nAn to nBn	0.5	9.2	0.5	6.9	0.5	6.0	0.5	5.1	0.5	4.9	r	
	delay	nBn to nAn	0.5	9.2	0.5	8.7	0.5	8.5	0.5	8.2	0.5	8.0	r	
t _{dis}	disable time	nOE to nAn	1.5	11.6	1.5	11.6	1.5	11.6	1.5	11.6	1.5	11.6	r	
		nOE to nBn	1.5	12.5	1.5	9.7	1.5	9.5	1.0	8.1	1.0	8.9	r	
t _{en}	enable time	nOE to nAn	1.0	14.5	1.0	14.5	1.0	14.5	1.0	14.5	1.0	14.5	r	
		nOE to nBn	1.1	14.9	1.1	11.0	1.1	9.6	1.0	8.1	1.0	7.7	r	
V _{CC(A)} =	1.4 V to 1.6 V													
t _{pd}	propagation	nAn to nBn	0.5	8.7	0.5	6.2	0.5	5.2	0.5	4.1	0.5	3.7	r	
	delay	nBn to nAn	0.5	6.9	0.5	6.2	0.5	5.9	0.5	5.6	0.5	5.5	r	
t _{dis}	disable time	nOE to nAn	1.5	9.1	1.5	9.1	1.5	9.1	1.5	9.1	1.5	9.1	r	
		nOE to nBn	1.5	11.4	1.5	8.7	1.5	7.5	1.0	6.5	1.0	6.3	r	
t _{en}	enable time	nOE to nAn	1.0	10.1	1.0	10.1	1.0	10.1	1.0	10.1	1.0	10.1	r	
		nOE to nBn	1.0	13.5	1.0	10.1	0.5	8.1	0.5	5.9	0.5	5.2	r	
V _{CC(A)} =	1.65 V to 1.95	V												
t _{pd}	propagation	nAn to nBn	0.5	8.5	0.5	5.9	0.5	4.8	0.5	3.7	0.5	3.3	r	
	delay	nBn to nAn	0.5	6.0	0.5	5.2	0.5	4.8	0.5	4.5	0.5	4.4	r	
t _{dis}	disable time	nOE to nAn	1.5	7.7	1.5	7.7	1.5	7.7	1.5	7.7	1.5	7.7	r	
		nOE to nBn	1.5	11.1	1.5	8.4	1.5	7.1	1.0	5.9	1.0	5.7	r	
t _{en}	enable time	$n\overline{OE}$ to nAn	1.0	7.8	1.0	7.8	1.0	7.8	1.0	7.8	1.0	7.8	r	
		nOE to nBn	1.0	13.0	1.0	9.2	0.5	7.4	0.5	5.3	0.5	4.5	r	
VataSheet VCC(A) =	2.3 V to 2.7 V													
t _{pd}	propagation	nAn to nBn	0.5	8.2	0.5	5.6	0.5	4.6	0.5	3.3	0.5	2.8	r	
	delay	nBn to nAn	0.5	5.1	0.5	4.1	0.5	3.7	0.5	3.4	0.5	3.2	r	
t _{dis}	disable time	nOE to nAn	1.0	6.1	1.0	6.1	1.0	6.1	1.0	6.1	1.0	6.1	r	
		nOE to nBn	1.0	10.6	1.0	7.9	1.0	6.6	1.0	6.1	1.0	5.2	r	
t _{en}	enable time	$n\overline{OE}$ to nAn	0.5	5.3	0.5	5.3	0.5	5.3	0.5	5.3	0.5	5.3	r	
		$n\overline{OE}$ to nBn	0.5	12.5	0.5	9.4	0.5	7.3	0.5	5.1	0.5	4.5	r	
$V_{CC(A)} =$	3.0 V to 3.6 V													
t _{pd}	propagation	nAn to nBn	0.5	8.0	0.5	5.5	0.5	4.4	0.5	3.2	0.5	2.7	r	
	delay	nBn to nAn	0.5	4.9	0.5	3.7	0.5	3.3	0.5	2.9	0.5	2.7	r	
t _{dis}	disable time	$n\overline{OE}$ to nAn	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	r	
		nOE to nBn	1.0	10.3	1.0	7.7	1.0	6.5	1.0	5.2	0.5	5.0	r	
t _{en}	enable time	nOE to nAn	0.5	4.3	0.5	4.3	0.5	4.2	0.5	4.1	0.5	4.0	r	
5		nOE to nBn	0.5	12.4	0.5	9.3	0.5	7.2	0.5	4.9	0.5	4.0	r	

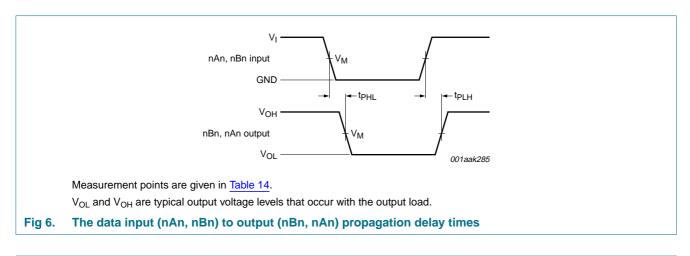
Table 12. Dynamic characteristics for temperature range $-40 \degree$ C to $+85 \degree$ C [1] Voltages are referenced to GND (ground = 0 V): for test circuit see Figure 8: for wave forms see Figure 6 and Figure 7.

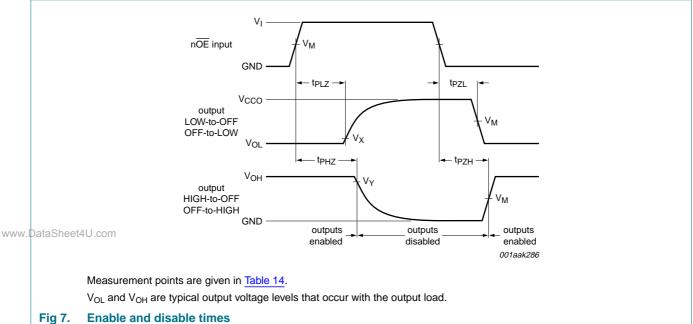
[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

Symbol	Parameter	ol Parameter	Conditions					Vc	C(B)					
			1.2 V	± 0.1 V	1.5 V :	± 0.1 V	1.8 V ±	0.15 V	2.5 V :	± 0.2 V	3.3 V	± 0.3 V		
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
V _{CC(A)} =	1.1 V to 1.3 V													
t _{pd}	propagation	nAn to nBn	0.5	10.2	0.5	7.6	0.5	6.6	0.5	5.7	0.5	5.4	I	
	delay	nBn to nAn	0.5	10.2	0.5	9.6	0.5	9.4	0.5	9.1	0.5	8.8	I	
t _{dis}	disable time	$n\overline{OE}$ to nAn	1.5	12.8	1.5	12.8	1.5	12.8	1.5	12.8	1.5	12.8	I	
		nOE to nBn	1.5	13.8	1.5	10.7	1.5	10.5	1.0	9.0	1.5	9.8	I	
t _{en}	enable time	nOE to nAn	1.0	16.0	1.0	16.0	1.0	16.0	1.0	16.0	1.0	16.0	I	
		nOE to nBn	1.1	16.4	1.1	12.1	1.1	10.6	1.0	9.0	1.0	8.5	I	
$V_{CC(A)} =$	1.4 V to 1.6 V													
t _{pd}	propagation	nAn to nBn	0.5	9.6	0.5	6.9	0.5	5.8	0.5	4.6	0.5	4.1	I	
	delay	nBn to nAn	0.5	7.6	0.5	6.9	0.5	6.5	0.5	6.2	0.5	6.1	l	
t _{dis}	disable time	nOE to nAn	1.5	10.1	1.5	10.1	1.5	10.1	1.5	10.1	1.5	10.1	I	
		nOE to nBn	1.5	12.6	1.5	9.6	1.5	8.3	1.0	7.2	1.0	7.0	I	
t _{en}	enable time	nOE to nAn	1.0	11.2	1.0	11.2	1.0	11.2	1.0	11.2	1.0	11.2	I	
		nOE to nBn	1.0	14.9	1.0	11.2	0.5	9.0	0.5	6.5	0.5	5.8	I	
$V_{CC(A)} =$	1.65 V to 1.95	V												
t _{pd}	propagation delay	nAn to nBn	0.5	9.4	0.5	6.5	0.5	5.3	0.5	4.1	0.5	3.7	I	
		nBn to nAn	0.5	6.6	0.5	5.8	0.5	5.3	0.5	5.0	0.5	4.9	I	
t _{dis}	disable time	nOE to nAn	1.5	8.5	1.5	8.5	1.5	8.5	1.5	8.5	1.5	8.5	I	
		nOE to nBn	1.5	12.3	1.5	9.3	1.5	7.9	1.0	6.5	1.0	6.3	I	
t _{en}	enable time	nOE to nAn	1.0	8.6	1.0	8.6	1.0	8.6	1.0	8.6	1.0	8.6	I	
		nOE to nBn	1.0	14.3	1.0	10.2	0.5	8.2	0.5	5.9	0.5	5.0	I	
VataSheet	2.3 V to 2.7 V													
t _{pd}	propagation	nAn to nBn	0.5	9.1	0.5	6.2	0.5	5.1	0.5	3.7	0.5	3.1	ļ	
	delay	nBn to nAn	0.5	5.7	0.5	4.6	0.5	4.1	0.5	3.8	0.5	3.6	ļ	
t _{dis}	disable time	nOE to nAn	1.0	6.8	1.0	6.8	1.0	6.8	1.0	6.8	1.0	6.8	ļ	
		nOE to nBn	1.0	11.7	1.0	8.7	1.0	7.3	1.0	6.8	1.0	5.8	ļ	
t _{en}	enable time	nOE to nAn	0.5	5.9	0.5	5.9	0.5	5.9	0.5	5.9	0.5	5.9	ļ	
		nOE to nBn	0.5	13.8	0.5	10.4	0.5	8.1	0.5	5.7	0.5	5.0	I	
$V_{CC(A)} =$	3.0 V to 3.6 V													
t _{pd}	propagation	nAn to nBn	0.5	8.8	0.5	6.1	0.5	4.9	0.5	3.6	0.5	3.0	I	
	delay	nBn to nAn	0.5	5.4	0.5	4.1	0.5	3.7	0.5	3.2	0.5	3.0	I	
t _{dis}	disable time	nOE to nAn	0.5	5.5	0.5	5.5	0.5	5.5	0.5	5.5	0.5	5.5	I	
		nOE to nBn	1.0	11.4	1.0	8.5	1.0	7.2	1.0	5.8	0.5	5.5	I	
t _{en}	enable time	nOE to nAn	0.5	4.8	0.5	4.8	0.5	4.7	0.5	4.6	0.5	4.4	I	
Len		nOE to nBn	0.5	13.7	0.5	10.3	0.5	8.0	0.5	5.4	0.5	4.4	I	


Table 13. Dynamic characteristics for temperature range –40 °C to +125 °C [1]

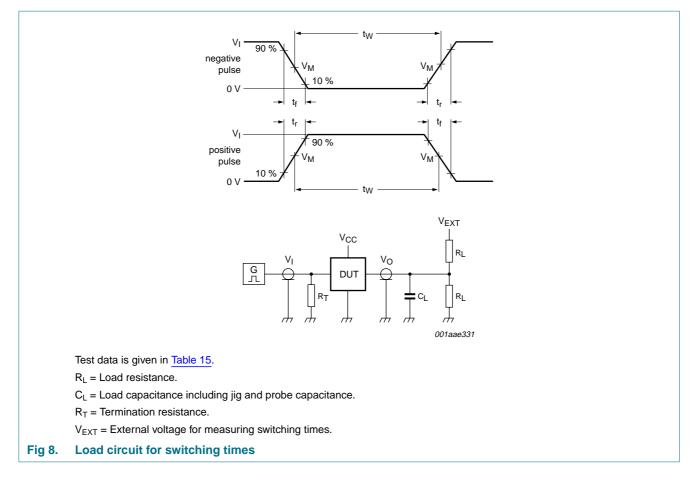

[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

11. Waveforms

Table 14. Measurement points


Supply voltage	Input ^[1]	Output ^[2]		
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y
0.8 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} – 0.1 V
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V
3.0 V to 3.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} – 0.3 V

[1] V_{CCI} is the supply voltage associated with the data input port.

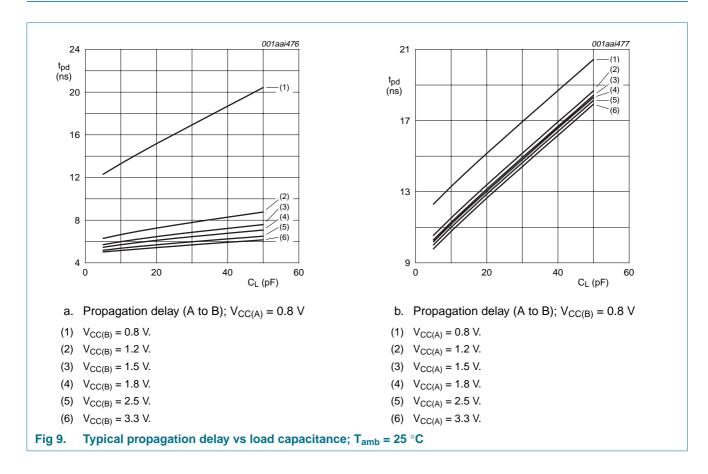
[2] V_{CCO} is the supply voltage associated with the output port.

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

Table 15. Test data

	Supply voltage	Input		Load		V _{EXT}		
www.E	VtaSheeVU.com VCC(A), VCC(B)	V [1]	∆t/∆V[2]	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ^[3]}
	0.8 V to 1.6 V	V _{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}
	1.65 V to 2.7 V	V _{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}
	3.0 V to 3.6 V	V _{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}

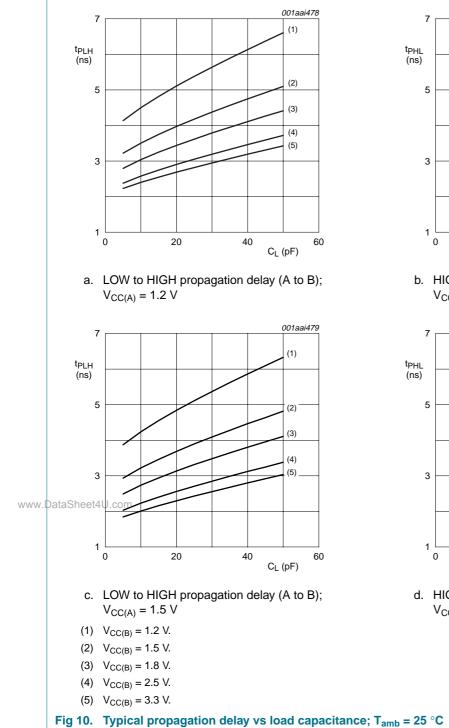

[1] V_{CCI} is the supply voltage associated with the data input port.

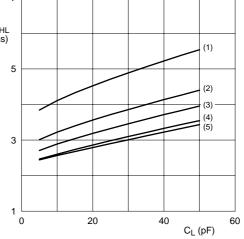
[2] $dV/dt \ge 1.0 V/ns$

[3] V_{CCO} is the supply voltage associated with the output port.

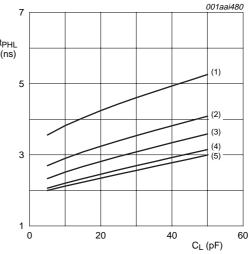
74AVCH16T245

16-bit dual supply translating transceiver; 3-state

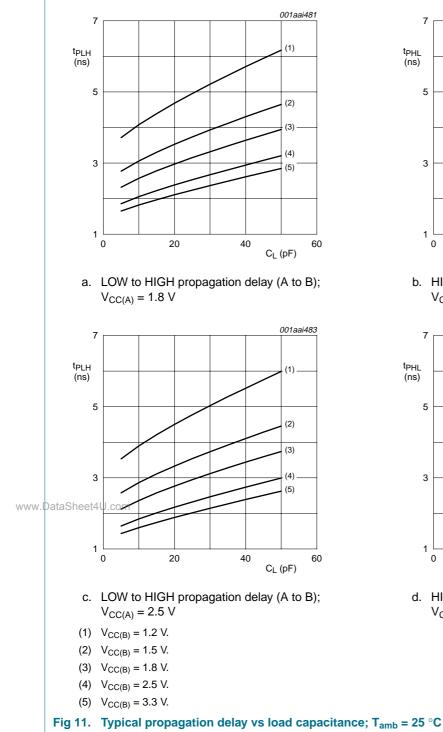


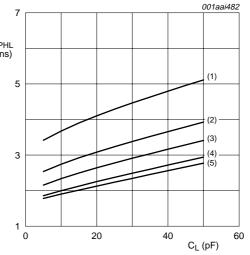

12. Typical propagation delay characteristics

74AVCH16T245

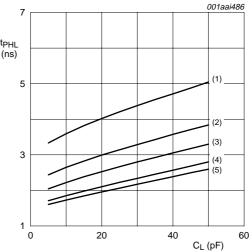

001aai491

16-bit dual supply translating transceiver; 3-state

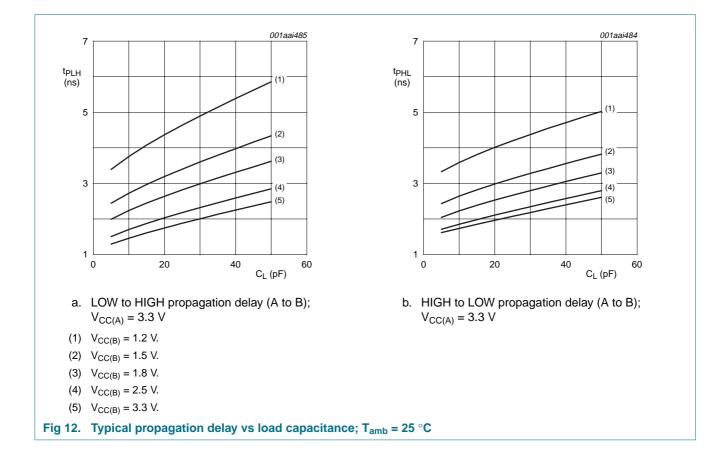

b. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 1.2 \text{ V}$



d. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 1.5 \text{ V}$

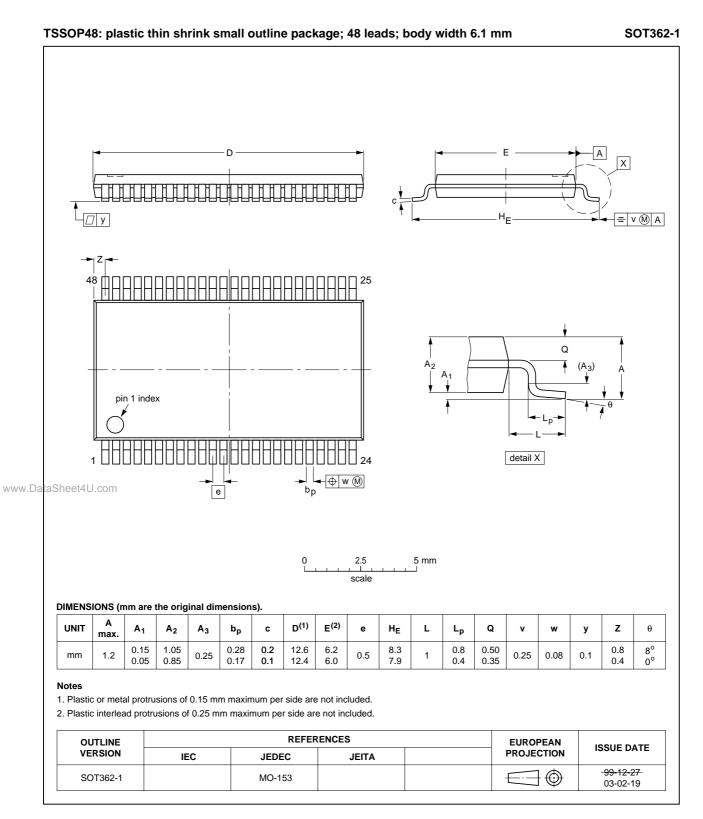

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

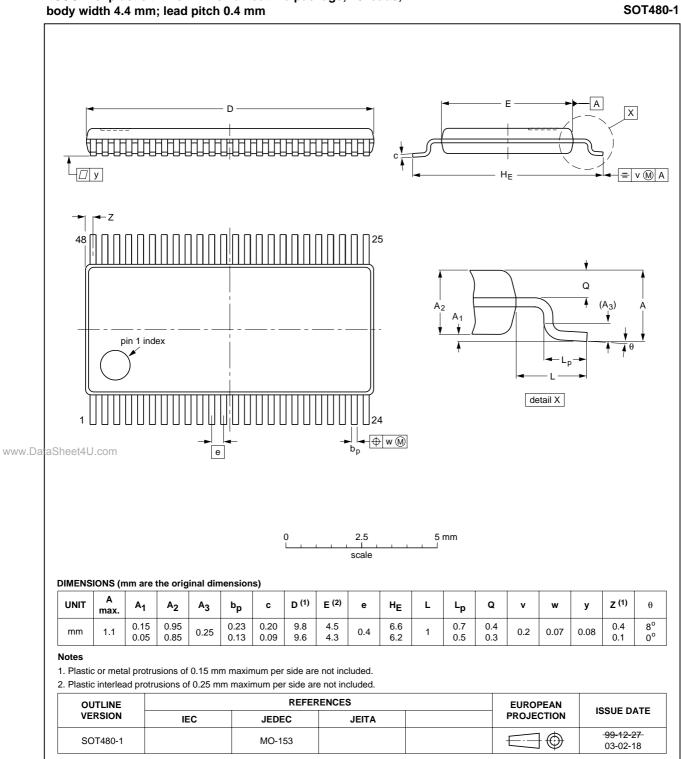

b. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 1.8 \text{ V}$

d. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 2.5 \text{ V}$

74AVCH16T245


16-bit dual supply translating transceiver; 3-state

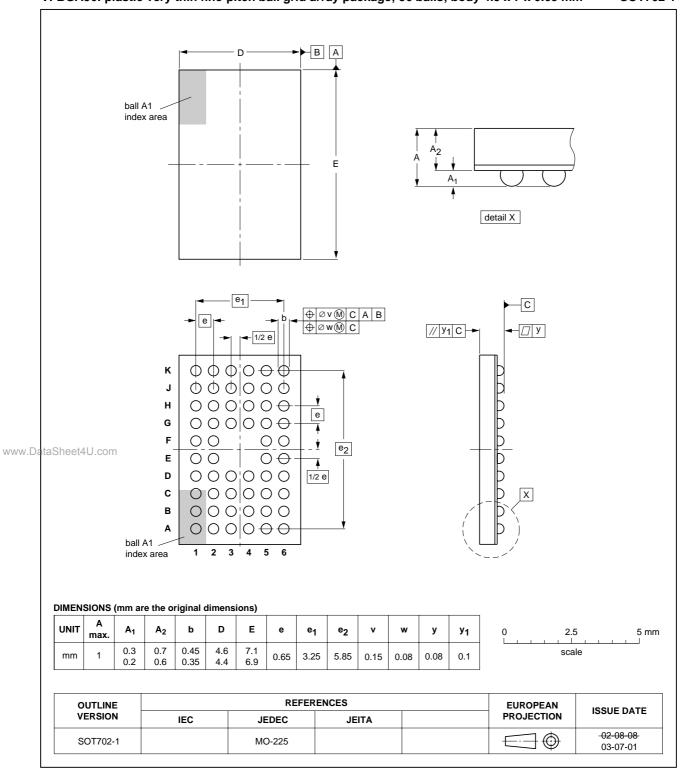
74AVCH16T245


16-bit dual supply translating transceiver; 3-state

13. Package outline

Fig 13. Package outline SOT362-1 (TSSOP48)

16-bit dual supply translating transceiver; 3-state

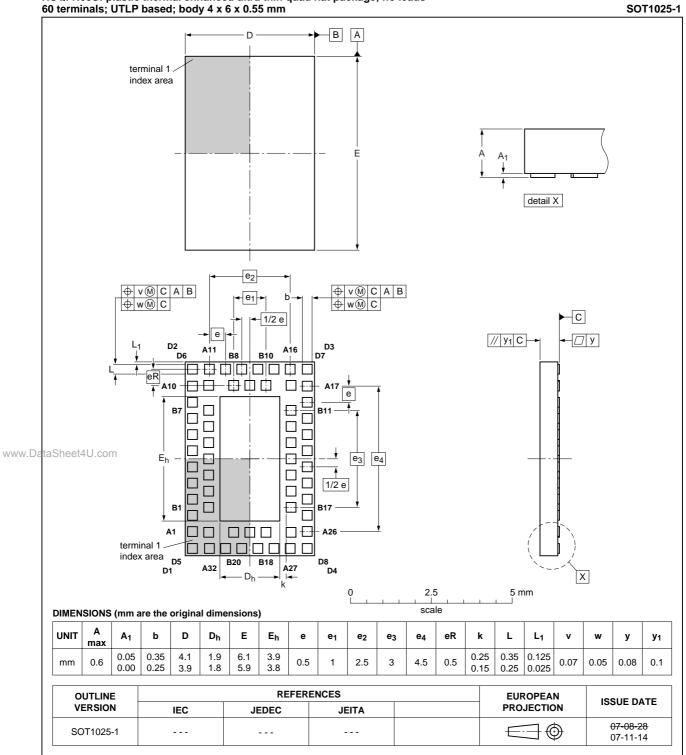


TSSOP48: plastic thin shrink small outline package; 48 leads;

Fig 14. Package outline SOT480-1 (TSSOP48)

74AVCH16T245

16-bit dual supply translating transceiver; 3-state



VFBGA56: plastic very thin fine-pitch ball grid array package; 56 balls; body 4.5 x 7 x 0.65 mm SOT702-1

Fig 15. Package outline SOT702-1 (VFBGA56)

74AVCH16T245_1 Product data sheet

16-bit dual supply translating transceiver; 3-state

HUQFN60U: plastic thermal enhanced ultra thin quad flat package; no leads 60 terminals; UTLP based; body 4 x 6 x 0.55 mm

Fig 16. Package outline SOT1025-1 (HUQFN60U)

74AVCH16T245 1 **Product data sheet**

16-bit dual supply translating transceiver; 3-state

14. Abbreviations

Table 16.	Abbreviations
Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

15. Revision history

Table 17. Revision his	story			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74AVCH16T245_1	20091014	Product data sheet	-	-

74AVCH16T245

16-bit dual supply translating transceiver; 3-state

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

16-bit dual supply translating transceiver; 3-state

18. Contents

1	General description 1
2	Features 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning 4
5.2	Pin description 6
6	Functional description 6
7	Limiting values 7
8	Recommended operating conditions7
9	Static characteristics 8
10	Dynamic characteristics 12
11	Waveforms 16
12	Typical propagation delay characteristics 18
13	Package outline 22
14	Abbreviations
15	Revision history
16	Legal information 27
16.1	Data sheet status 27
16.2	Definitions 27
16.3	Disclaimers 27
16.4	Trademarks 27
17	Contact information 27
18	Contents

www.DataSheet4U.com

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 14 October 2009 Document identifier: 74AVCH16T245_1

