Low-power dual supply buffer/line driver; 3-state Rev. 01 — 1 July 2009

Product data sheet

General description

The 74AUP2T1326 is a high-performance, dual supply, low-power, low-voltage, dual buffer/line driver with output enable circuitry.

The 74AUP2T1326 is designed for logic-level translation and combines the functions of the 74AUP1G32 and 74AUP2G126. The buffer/line driver is controlled by two output enable inputs (1OE and 2OE). A logic LOW on input 1OE causes the output 2Y to assume a high-impedance OFF-state, a logic LOW on 2OE causes the output 3Y to assume a high-impedance OFF-state. The output 1Y is the result of a logic OR of the two output enable inputs.

The output enable inputs (10E and 20E) are Schmitt trigger inputs, they switch at different voltages for positive and negative-going signals. The difference between the positive voltage V_{T+} and the negative voltage V_{T-} is defined as the input hysteresis voltage V_H. The output enable inputs accept standard input signals and are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals

Both $V_{CC(A)}$ and $V_{CC(B)}$ can be supplied at any voltage between 1.1 V and 3.6 V making the device suitable for interfacing between any of the low voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V) with compatible input levels. Pins 10E, 20E and 1Y are referenced to $V_{CC(A)}$ and pins A, 2Y and 3Y are referenced to $V_{CC(B)}$.

The device ensures low static and dynamic power consumption and is fully specified for partial power down applications using I_{OFF}. The I_{OFF} circuitry disables the outputs, preventing any damaging backflow current through the device when it is powered down.

Features 2.

- Wide supply voltage range:
 - ◆ V_{CC(A)}: 1.1 V to 3.6 V; V_{CC(B)}: 1.1 V to 3.6 V.
- High noise immunity
- Complies with JEDEC standards:
 - ◆ JESD8-7 (1.2 V to 1.95 V)
 - ◆ JESD8-5 (1.8 V to 2.7 V)
 - ◆ JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114E Class 2A exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
 - ◆ CDM JESD22-C101C exceeds 1000 V
- Low static power consumption; $I_{CC} = 0.9 \,\mu\text{A}$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II

Low-power dual supply buffer/line driver; 3-state

- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from –40 °C to +85 °C

3. Ordering information

Table 1. Ordering information

Type number	Package									
	Temperature range	Name	Description	Version						
74AUP2T1326GF	–40 °C to +85 °C	XSON10U	plastic extremely thin small outline package; no leads; 10 terminals; UTLP based; body 1 x 1.7 x 0.5 mm	SOT1081-1						

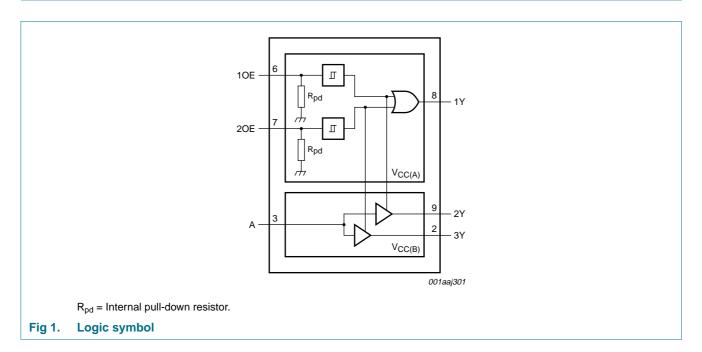
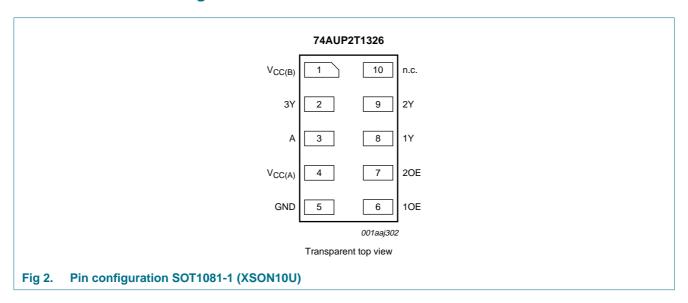

4. Marking

Table 2. Marking

Type number	Marking code ^[1]
74AUP2T1326GF	pf

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


5. Functional diagram

www.DataSheet4U.com

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
$V_{CC(B)}$	1	supply voltage B
3Y	2	data output
Α	3	data input
V _{CC(A)}	4	supply voltage A
GND	5	ground (0 V)
10E	6	output enable input (Schmitt trigger input)
20E	7	output enable input (Schmitt trigger input)
1Y	8	data output
2Y	9	data output
n.c.	10	not connected

Low-power dual supply buffer/line driver; 3-state

7. Functional description

Table 4. Function table^[1]

Input			Output		
10E	20E	A	1Y	2Y	3Y
L	L	X	L	Z	Z
L	Н	L	Н	Z	L
L	Н	Н	Н	Z	Н
Н	L	L	Н	L	Z
Н	L	Н	Н	Н	Z
Н	Н	L	Н	L	L
Н	Н	Н	Н	Н	Н

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{CC(A)}$	supply voltage A		-0.5	+4.6	V
$V_{CC(B)}$	supply voltage B		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
V_{I}	input voltage		<u>[1]</u> –0.5	+4.6	V
I_{OK}	output clamping current	V _O < 0 V	<u>[2]</u> –50	-	mA
V_{O}	output voltage	Active mode and Power-down mode	<u>[1]</u> –0.5	+4.6	V
Io	output current	$V_O = 0 V \text{ to } V_{CCO}$	[2]	±20	mA
I _{CC}	supply current		-	50	mA
I_{GND}	ground current		-50	-	mA
T_{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$	[3]	250	mW

^[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{CC(A)}$	supply voltage A		1.1	3.6	V
$V_{CC(B)}$	supply voltage B		1.1	3.6	V
V_{I}	input voltage		0	3.6	V
V_{O}	output voltage		[1] 0	V_{CCO}	V

www.DataSheet4U.com

74AUP2T1326_1 © NXP B.V. 2009. All rights reserved.

^[2] V_{CCO} is the supply voltage associated with an output pin.

^[3] For XSON10U package: above 45 °C the value of Ptot derates linearly with 2.4 mW/K.

Low-power dual supply buffer/line driver; 3-state

 Table 6.
 Recommended operating conditions ...continued

Symbol	Parameter	Conditions	Min	Max	Unit
T _{amb}	ambient temperature		-40	+85	°C
$\Delta t/\Delta V$	input transition rise and fall rate	input A; $V_{CCI} = 1.1 \text{ V to } 3.6 \text{ V}$	[2] -	200	ns/V
		input nOE; V _{CCI} = 1.1 V to 3.6 V	[2] -	30	ms/V

^[1] V_{CCO} is the supply voltage associated with an output pin.

10. Static characteristics

Table 7. Static characteristics

www.

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions			25 °C		–40 °C to	+85 °C	Unit
				Min	Тур	Max	Min	Max	V V V V V V V V V V V V V PA
V _{IH}	HIGH-level	input A;	[1][3]						
	input	$V_{CCI} = 1.65 \text{ V to } 1.95 \text{ V}$		0.65V _{CCI}	-	-	0.65V _{CCI}	-	V
	voltage	$V_{CCI} = 2.3 \text{ V to } 2.7 \text{ V}$		1.6	-	-	1.6	-	V
√ _{IL}	LOW-level	input A;	[1][3]						
	input voltage	$V_{CCI} = 1.65 \text{ V to } 1.95 \text{ V}$		-	-	$0.35V_{CCI}$	-	0.35V _{CCI}	V
	vollage	V_{CCI} = 2.3 V to 2.7 V		-	-	0.7	-	0.7	V
V _{OH}	HIGH-level	$V_I = V_{IL}$ or V_I or $V_I = V_{T+}$ or V_{T-}							
	output voltage	$I_O = -20 \mu A;$ $V_{CCO} = 1.65 \text{ V to } 2.7 \text{ V}$	[2]	V _{CCO} – 0.1	-	-	V _{CCO} – 0.1	-	V
		$I_O = -3 \text{ mA}; V_{CCO} = 1.65 \text{ V}$		1.2	-	-	1.2	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CCO} = 2.3 \text{ V}$		1.97	-	-	1.97	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CCO} = 2.3 \text{ V}$		2.0	-	-	2.0	-	V
V _{OL}	LOW-level	$V_I = V_{IL}$ or V_I or $V_I = V_{T+}$ or V_{T-}	[2]						
	output voltage	$I_O = 20 \mu A;$ $V_{CCO} = 1.65 \text{ V to } 2.7 \text{ V}$		-	-	0.10	-	0.10	V
		$I_O = 3.0 \text{ mA}; V_{CCO} = 1.65 \text{ V}$		-	-	0.45	-	0.45	V
		$I_O = 2.3 \text{ mA}; V_{CCO} = 2.3 \text{ V}$		-	-	0.33	-	0.33	V
		$I_O = 4.0 \text{ mA}; V_{CCO} = 2.3 \text{ V}$		-	-	0.40	-	0.40	V
I	input leakage current	input A; $V_I = 0 \text{ V to } 2.7 \text{ V};$ $V_{CCI} = 1.65 \text{ V to } 2.7 \text{ V}$	<u>[1]</u>	-	-	±0.1	-	±0.5	μΑ
OZ	OFF-state output current	output 2Y, 3Y; $V_I = V_{IH}$ or V_{IL} ; $V_O = 0$ V to 2.7 V; $V_{CC(A)} = 1.65$ V to 2.7 V; $V_{CC(B)} = 1.65$ V to 2.7 V		-	-	±0.1	-	±0.5	μΑ
OFF	power-off leakage current	1Y; $V_{CC(A)} = 0 \text{ V}$; $V_O = 0 \text{ V}$ to 2.7 V; $V_{CC(B)} = 1.65 \text{ V}$ to 2.7 V		-	-	±0.2	-	±0.5	μΑ
ataSheet	4U.com	A, 2Y, 3Y; $V_{CC(B)} = 0 \text{ V}$; $V_1 \text{ or } V_0 = 0 \text{ V to } 2.7 \text{ V}$; $V_{CC(A)} = 1.65 \text{ V to } 2.7 \text{ V}$		-	-	±0.2	-	±0.5	μΑ

^[2] V_{CCI} is the supply voltage associated with an input pin.

Low-power dual supply buffer/line driver; 3-state

Table 7. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions			25 °C		-40 °C to	+85 °C	Unit
				Min	Тур	Max	Min	Max	
ΔI_{OFF}	additional power-off leakage	1Y; $V_{CC(A)} = 0 \text{ V to } 0.2 \text{ V};$ $V_O = 0 \text{ V to } 2.7 \text{ V};$ $V_{CC(B)} = 1.65 \text{ V to } 2.7 \text{ V}$		-	-	±0.2	-	±0.6	μА
	current	A, 2Y, 3Y; $V_{CC(B)} = 0 \text{ V to } 0.2 \text{ V};$ $V_{I} \text{ or } V_{O} = 0 \text{ V to } 2.7 \text{ V};$ $V_{CC(A)} = 1.65 \text{ V to } 2.7 \text{ V}$		-	-	±0.2	-	±0.6	μΑ
$I_{CC(A)}$	supply	$V_I = 0 \text{ V or } V_{CC(A)}; I_O = 0 \text{ A}$	<u>[1]</u>						
	current A	$V_{CC(A)} = 1.65 \text{ V to } 2.7 \text{ V};$ $V_{CC(B)} = 0 \text{ V to } 2.7 \text{ V}$		-	-	0.5	-	0.9	μΑ
I _{CC(B)}	CC(B) supply current B	$V_I = 0 \text{ V or } V_{CC(B)}; I_O = 0 \text{ A}$	[1]						
		$V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V to}$ 2.7 V;		-	-	0.5	-	0.9	μΑ
		$V_{CC(A)} = 1.71 \text{ V}; V_{CC(B)} = 2.6 \text{ V}$		-	-	500	-	750	μΑ
ΔI_{CC}	additional supply	nOE; $V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V};$ $V_I = V_{CC(A)} - 0.6 \text{ V}$		-	-	40	-	50	μΑ
	current	A; $V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V};$ $V_1 = V_{CC(B)} - 0.6 \text{ V};$		-	-	80	-	100	μΑ
		A; V_1 = GND to 2.7 V; nOE = GND; $V_{CC(A)}$ = 1.65 V to 2.7 V; $V_{CC(B)}$ = 1.65 V to 2.7 V	<u>[4]</u>	-	-	2	-	2	μΑ
R _{pd}	pull-down resistance			145	200	255	140	260	kΩ
Cı	input capacitance	input A; $V_I = 0 \text{ V or } V_{CCI}$; $V_{CCI} = 1.65 \text{ V to } 2.7 \text{ V}$	<u>[1]</u>	-	0.9	-	-	-	pF
		input nOE; $V_I = 0 \text{ V or } V_{CCI}$; $V_{CCI} = 1.65 \text{ V to } 2.7 \text{ V}$	<u>[1]</u>	-	8.0	-	-	-	pF
Co	output	1Y; $V_O = GND$; $V_{CCO} = 0 V$	[2] _		1.7	-	-	-	pF
	capacitance	2Y, 3Y enabled; $V_O = GND$; $V_{CCO} = 0 V$	[2] _		1.7	-	-	-	pF
		2Y, 3Y disabled; $V_{CCO} = 0 \text{ V to } 2.7 \text{ V};$ $V_O = \text{GND or } V_{CCO}$	[2] _		1.5	-	-	-	pF

^[1] V_{CCI} is the supply voltage associated with the input pin.

^[2] V_{CCO} is the supply voltage associated with the output pin.

^[3] For V_{CCI} values not specified in the data sheet: minimum $V_{IH} = 0.7 \times V_{CCI}$ and maximum $V_{IL} = 0.3 \times V_{CCI}$.

^[4] To show I_{CC} remains very low when the input-disable feature is enabled.

Low-power dual supply buffer/line driver; 3-state

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 5.

Symbol	Parameter	Conditions			25 °C		-40 °C	to +85 °C	Unit
				Min	Typ[1]	Max	Min	Max	
C _L = 5 p	F								
t _{pd}	propagation delay	A to 2Y, 3Y; see Figure 3	[2]						
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		1.9	3.2	4.5	1.7	5.0	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		1.5	2.6	3.4	1.3	3.8	ns
		nOE to 1Y; see Figure 3							
		$V_{CC(A)} = 1.65 \text{ V to } 1.95 \text{ V}$		2.4	4.0	5.4	2.2	6.0	ns
		$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$		2.2	3.2	3.9	2.0	4.3	ns
C _L = 10	pF								
t _{pd}	propagation delay	A to 2Y, 3Y; see Figure 3	[2]						
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		2.3	3.8	5.3	2.0	5.8	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		1.8	3.2	4.1	1.5	4.5	ns
		nOE to 1Y; see Figure 3							
		$V_{CC(A)} = 1.65 \text{ V to } 1.95 \text{ V}$		2.9	4.6	6.1	2.5	6.7	ns
		$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$		2.5	3.7	4.6	2.2	5.0	ns
$C_L = 5 p$	F; $V_{CC(A)} = 1.65 \text{ V to } 1.65 \text{ V}$	95 V							
t _{en}	enable time	nOE to 2Y, 3Y; see Figure 4	[3]						
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		2.4	4.4	9.7	2.1	10.1	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		2.2	3.9	8.2	1.9	8.8	ns
t _{dis}	disable time	nOE to 2Y, 3Y; see Figure 4	<u>[4]</u>						
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		2.4	4.5	8.9	2.1	9.4	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		2.2	3.8	7.8	1.9	8.4	ns
$C_L = 5 p$	F; $V_{CC(A)} = 2.3 \text{ V to } 2.7$	V							
t _{en}	enable time	nOE to 2Y, 3Y; see Figure 4	<u>[3]</u>						
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		2.4	4.0	8.7	2.1	9.0	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		2.2	3.4	7.2	1.9	7.7	ns
t _{dis}	disable time	nOE to 2Y, 3Y; see Figure 4	<u>[4]</u>						
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		2.4	4.2	7.9	2.1	8.3	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		2.2	3.5	6.8	1.9	7.3	ns
C _L = 10	pF; V _{CC(A)} = 1.65 V to	1.95 V							
t _{en}	enable time	nOE to 2Y, 3Y; see Figure 4	[3]						
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		2.9	4.9	11.0	2.5	11.7	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		2.5	4.4	9.7	2.2	10.5	ns
t _{dis}	disable time	nOE to 2Y, 3Y; see Figure 4	<u>[4]</u>						
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		2.9	5.6	10.8	2.5	11.5	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		2.5	4.6	9.5	2.2	10.1	ns

www.DataSheet4U.com

Low-power dual supply buffer/line driver; 3-state

 Table 8.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 5.

Symbol	Parameter	Conditions			25 °C		-40 °C 1	to +85 °C	Unit
				Min	Typ[1]	Max	Min	Max	
C _L = 10 p	pF; V _{CC(A)} = 2.3 V to 2.3	7 V							
t _{en}	enable time	nOE to 2Y, 3Y; see Figure 4	[3]						
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		2.9	4.5	10.0	2.5	10.5	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		2.5	3.9	8.7	2.2	9.3	ns
t _{dis}	disable time	nOE to 2Y, 3Y; see Figure 4	<u>[4]</u>						
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		2.9	5.3	9.8	2.5	10.3	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		2.5	4.3	8.4	2.2	8.9	ns
$C_L = 5 pl$	F and 10 pF								
C _{PD}	power dissipation capacitance	per active output; output 2Y, 3Y; $f_i = 1$ MHz; $V_i = 0$ V to V_{CC}	<u>[5]</u>						
		$V_{CC(A)} = V_{CC(B)} = 1.8 \text{ V}$		-	3.0	-	-	-	pF
		$V_{CC(A)} = V_{CC(B)} = 2.5 \text{ V}$		-	3.6	-	-	-	pF

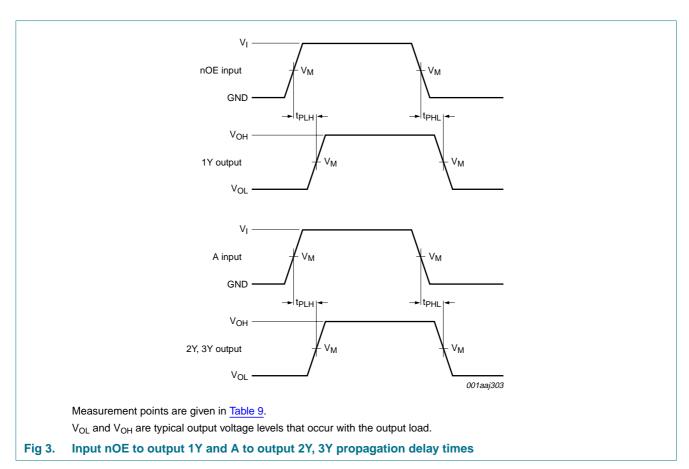
- [1] All typical values are measured at nominal $V_{CC(A)}$ and $V_{CC(B)}$.
- [2] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [3] t_{en} is the same as t_{PZH} and t_{PZL} .
- [4] t_{dis} is the same as t_{PHZ} and t_{PLZ} .
- [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

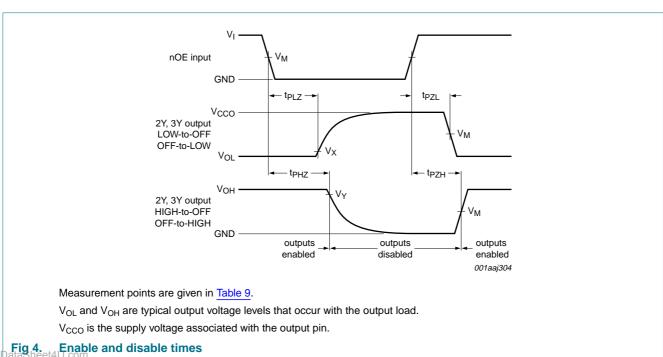
 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = load capacitance in pF;


V_{CC} = supply voltage in V;

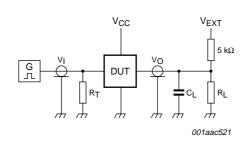

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

8 of 16

12. Waveforms

10 of 16


74AUP2T1326

Low-power dual supply buffer/line driver; 3-state

Table 9. Measurement points

Supply voltage	Input ^[1]	Output ^[2]						
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y				
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V				

- [1] V_{CCI} is the supply voltage associated with the data input port.
- [2] V_{CCO} is the supply voltage associated with the output port.

Test data is given in Table 10.

Definitions for test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 5. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	Input		Load ^[2]		V _{EXT}			
V _{CC(A)} , V _{CC(B)}	V _I [1]	$t_r = t_f$	CL	R _L [3]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [4]	
1.65 V to 2.7 V	V _{CCI}	≤ 3.0 ns	5 pF, 10 pF	5 k Ω or 1 M Ω	open	GND	2V _{CCO}	

- [1] V_{CCI} is the supply voltage associated with the data input port.
- [2] For measuring enable and disable times, C_L and R_L are connected to pin 2Y and 3Y.
- [3] For measuring enable and disable times R_L = 5 k Ω , for measuring propagation delays R_L = 1 M Ω .
- [4] V_{CCO} is the supply voltage associated with the output port.

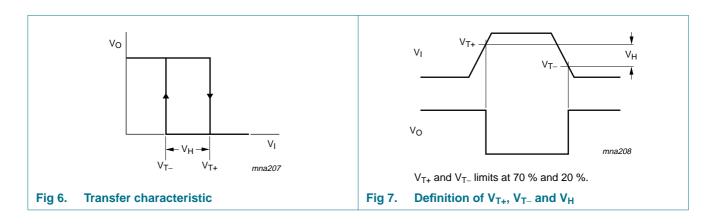
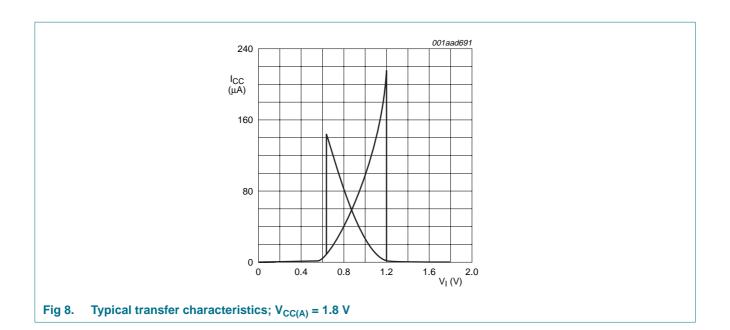
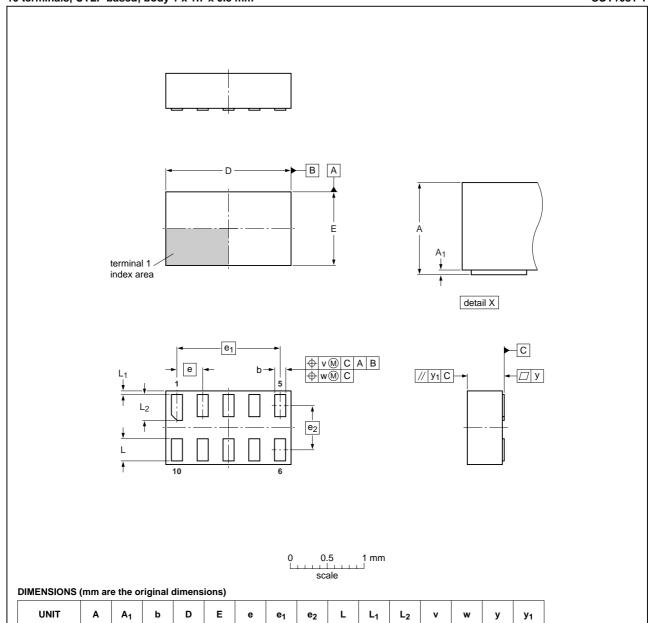

13. Transfer characteristics

Table 11. Transfer characteristics


Voltages are referenced to GND (ground = 0 V; for test circuit see Figure 5.

Symbol	Parameter	Conditions		25 °C		-40 °C to +85 °C		Unit
			Min	Тур	Max	Min	Max	
V_{T+}	positive-going threshold voltage	nOE inputs; see Figure 6 and Figure 7	·					
		V _{CC(A)} = 1.65 V	0.91	-	1.29	0.91	1.29	V
		V _{CC(A)} = 2.3 V	1.37	-	1.77	1.37	1.77	V
V _T negative-going threshold voltage	nOE inputs; see <u>Figure 6</u> and <u>Figure 7</u>							
		V _{CC(A)} = 1.65 V	0.47	-	0.84	0.47	0.84	V
	V _{CC(A)} = 2.3 V	0.69	-	1.04	0.69	1.04	V	
V _H hysteresis voltage		nOE inputs; (V _{T+} – V _{T-}); see <u>Figure 6</u> , <u>Figure 7</u> and <u>Figure 8</u>						
		V _{CC(A)} = 1.65 V	0.27	-	0.66	0.27	0.66	V
		V _{CC(A)} = 2.3 V	0.53	-	0.92	0.53	0.92	V

14. Waveforms transfer characteristics


Low-power dual supply buffer/line driver; 3-state

15. Package outline

XSON10U: plastic extremely thin small outline package; no leads; 10 terminals; UTLP based; body 1 x 1.7 x 0.5 mm

SOT1081-1

UN	NIT	Α	A ₁	b	D	E	е	e ₁	e ₂	L	L ₁	L ₂	v	w	у	У1
	max	0.50	0.05	0.20	1.8	1.1				0.4	0.10	0.45				
mm	nom	0.48	0.03	0.15	1.7	1.0	0.35	1.4	0.6	0.3	0.05	0.35	0.1	0.05	0.05	0.1
	min	0.46	0.00	0.10	1.6	0.9				0.2	0.00	0.25				

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT1081-1						08-03-28 08-04-18	

Fig 9 Package outline SOT1081-1 (XSON10U)

Low-power dual supply buffer/line driver; 3-state

16. Abbreviations

Table 12. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

17. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP2T1326_1	20090701	Product data sheet	-	-

Low-power dual supply buffer/line driver; 3-state

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

18.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

www.DataSheet4U.com

Low-power dual supply buffer/line driver; 3-state

20. Contents

1	General description
2	Features
3	Ordering information 2
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning
6.2	Pin description
7	Functional description 4
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics 7
12	Waveforms
13	Transfer characteristics
14	Waveforms transfer characteristics 11
15	Package outline
16	Abbreviations
17	Revision history
18	Legal information
18.1	Data sheet status
18.2	Definitions
18.3	Disclaimers
18.4	Trademarks15
19	Contact information
20	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

