

Schematic and Connection Diagrams

©1995 National Semiconductor Corporation TL/F/5661

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

(Notes 1 and 2)	
V _{DD} Supply Voltage	-0.5V to $+18V$
V _{IN} Input Voltage	$-0.5V$ to $V_{\mbox{DD}}$ $+$ 0.5V
T _S Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (PD)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (Soldering, 10 see	conds) 260°C

Recommended Operating

Conditions (Note 2)	
V _{DD} Supply Voltage	3V to 15V
V _{IN} Input Voltage	0V to V _{DD}
T _A Operating Temperature Range	
CD4016BM	-55°C to +125°C
CD4016BC	-40° C to $+85^{\circ}$ C

DC Electrical Characteristics CD4016BM (Note 2)

Symbol	Parameter Quiescent Device Current	Conditions	-55°C		25°C			125°C		Units
Symbol		Conditions	Min	Max	Min	Тур	Max	Min	Мах	
IDD		$V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$		0.25		0.01	0.25		7.5	μA
		$V_{DD} = 10V, V_{IN} = V_{DD} \text{ or } V_{SS}$		0.5		0.01	0.5		15	μA
	$V_{DD} = 15V, V_{IN} = V_{DD} \text{ or } V_{SS}$					0.01	1.0		30	μA
Signal In	puts and Outputs									
R _{ON}	"ON" Resistance	$R_L = 10 k\Omega$ to $\frac{V_{DD} - V_{SS}}{2}$								
		$V_C = V_{DD}, V_{IS} = V_{SS} \text{ or } V_{DD}$								
		V _{DD} =10V		600		250	660		960	Ω
		$V_{DD} = 15V$		360		200	400		600	Ω
		$R_L = 10 k\Omega$ to $\frac{V_{DD} - V_{SS}}{2}$								
		$V_{\rm C} = V_{\rm DD}$								
		$V_{DD} = 10V, V_{IS} = 4.75 \text{ to } 5.25V$		1870		850	2000		2600	Ω
		$V_{DD} = 15V, V_{IS} = 7.25 \text{ to } 7.75V$		775		400	850		1230	Ω
ΔR_{ON}	Δ "ON" Resistance	$R_L = 10 \text{ k}\Omega \text{ to} \frac{V_{DD} - V_{SS}}{2}$								
	Between any 2 of	$V_{\rm C} = V_{\rm DD}$, $V_{\rm IS} = V_{\rm SS}$ to $V_{\rm DD}$								
	4 Switches	$V_{DD} = 10V$				15				Ω
	(In Same Package)	$V_{DD} = 15V$				10				Ω
l _{IS}	Input or Output Leakage	$V_{\rm C} = 0, V_{\rm DD} = 15V$		±50		±0.1	±50		±500	nA
	Switch "OFF"	$V_{IS} = 15V$ and $0V$,								
		V _{OS} =0V and 15V								
Control I	Inputs				1					
V _{ILC}	Low Level Input Voltage	$V_{IS} = V_{SS}$ and V_{DD}								
		$V_{OS} = V_{DD}$ and V_{SS}								
		$I_{IS} = \pm 10 \ \mu A$								
		V _{DD} =5V		0.9			0.7		0.5	V
		V _{DD} =10V		0.9			0.7		0.5	V
		V _{DD} =15V		0.9			0.7		0.5	V
VIHC	High Level Input Voltage	V _{DD} =5V	3.5		3.5			3.5		V
		$V_{DD} = 10V$ (see Note 6 and	7.0		7.0			7.0		V
		V _{DD} =15V Figure 8)	11.0		11.0			11.0		V
I _{IN}	Input Current	$V_{DD} - V_{SS} = 15V$		±0.1		$\pm 10^{-5}$	±0.1		±1.0	μA
		$V_{DD} \ge V_{IS} \ge V_{SS}$								
		$V_{DD} \ge V_C \ge V_{SS}$								

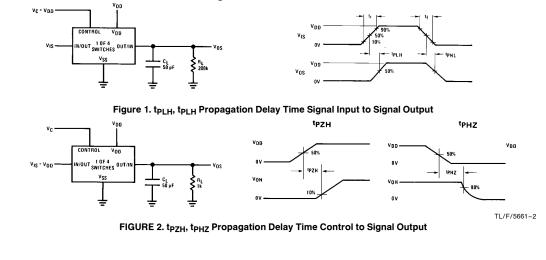
Symbol	Parameter	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS} \\ V_{DD} = 10V, V_{IN} = V_{DD} \text{ or } V_{SS} \\ V_{DD} = 15V, V_{IN} = V_{DD} \text{ or } V_{SS} \\ \hline \end{tabular}$		-40°C			25°C		8	5°C	Units
Symbol	Parameter			Min	Max	Min	Тур	Max	Min	Max	
IDD	Quiescent Device Current			1.0 2.0 4.0			0.01 0.01 0.01	1.0 2.0 4.0		7.5 15 30	μΑ μΑ μΑ
Signal In	puts and Outputs				1	1			1	1	
R _{ON}	"ON" Resistance	$ \begin{array}{l} {{R_L} = 10\;k\Omega \;to \; \frac{{{V_{DD}} - {V_{SS}}}}{2}} \\ {V_C = {V_{DD}},{V_{IS}} = {V_{SS}}\;or\;{V_{DD}} \\ {V_{DD}} = 10V \\ {V_{DD}} = 15V \\ {R_L} = 10\;k\Omega \;to \; \frac{{V_{DD} - {V_{SS}}}}{2} \\ {V_C} = {V_{DD}} \\ {V_{DD}} = 10V,{V_{IS}} = 4.75\;to\;5.25V \\ {V_{DD}} = 15V,{V_{IS}} = 7.25\;to\;7.75V \\ \end{array} $			610 370 1900 790		275 200 850 400	660 400 2000 850		840 520 2380 1080	Ω Ω Ω
ΔR _{ON}	Δ"ON" Resistance										
	Between any 2 of 4 Switches (In Same Package)						15 10				Ω Ω
I _{IS}	Input or Output Leakage Switch "OFF"	$V_{C} = 0, V_{DD} = 15V$ $V_{IS} = 0V \text{ or } 15V,$ $V_{OS} = 15V \text{ or } 0V$			±50		±0.1	±50		±200	nA
Control	nputs										
VILC	Low Level Input Voltage				0.9 0.9 0.9			0.7 0.7 0.7		0.4 0.4 0.4	V V V
VIHC	High Level Input Voltage	$V_{DD} = 5V$ $V_{DD} = 10V$ (see Note 6 and $V_{DD} = 15V$ Figure 8)		3.5 7.0 11.0		3.5 7.0 11.0			3.5 7.0 11.0		V V V
I _{IN}	Input Current	$\begin{array}{c} V_{CC}-V_{SS}=15V\\ V_{DD}\geq V_{IS}\geq V_{SS}\\ V_{DD}\geq V_{C}\geq V_{SS} \end{array}$			±0.3		±10 ⁻⁵	±0.3		±1.0	μΑ
AC E	Electrical Charact	teristics	* $T_A = 25^{\circ}C, t_r = t_f =$	20 ns	and V _S	₃ =0Vι	unless oth	erwise s	pecifie	d	
Symbol Parameter		r	Condi	Conditions			Min	Тур	Ma	ax 🛛	Units
t _{PHL} , t _P	t _{PHL} , t _{PLH} Propagation Delay T Signal Input to Signa		$V_{C} = V_{DD}, C_{L} = 50 \text{ pF}, (Figure 1)$ $R_{L} = 200 \text{k}$ $V_{DD} = 5 \text{V}$ $V_{DD} = 10 \text{V}$ $V_{DD} = 15 \text{V}$					58 27 20	10 50 40	D	ns ns ns
t _{PZH} , t _{PZL} Propagation Delay T Control Input to Sigr Output High Impeda Logical Level		nal	$R_L = 1.0 k\Omega, C_L = 50 pF, (Figures 2)$ and 3) $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$			52		20 18 17	50 40 38	D	ns ns ns
t _{PHZ} , t _{PLZ} Propagation De <i>Control Input to</i> Output Logical High Impedanc Sine Wave Dist		<i>nal</i> el to	$ \begin{array}{l} \label{eq:result} \hline R_L = 1.0 \ \text{k}\Omega, \ C_L = 50 \ \text{pF}, \ (Figures \ and \ 3) \\ \ V_{DD} = 5V \\ \ V_{DD} = 10V \\ \ V_{DD} = 15V \\ \ V_{C} = V_{DD} = 5V, \ V_{SS} = -5 \\ \ R_L = 10 \ \text{k}\Omega, \ V_{IS} = 5 \ V_{P,P}, \ f = 1 \ \text{kHz} \end{array} $				15 11 10 0.4	40 25 22	5	ns ns ns %	

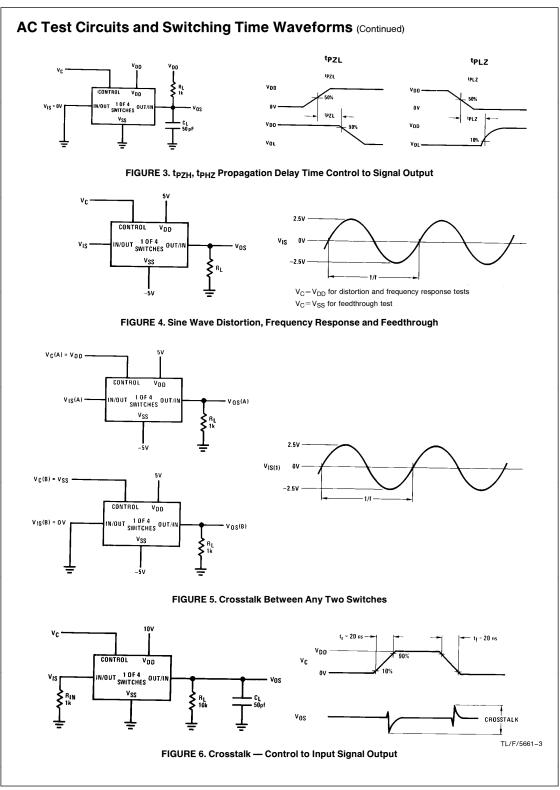
AC Electrical Characteristics* (Continued)

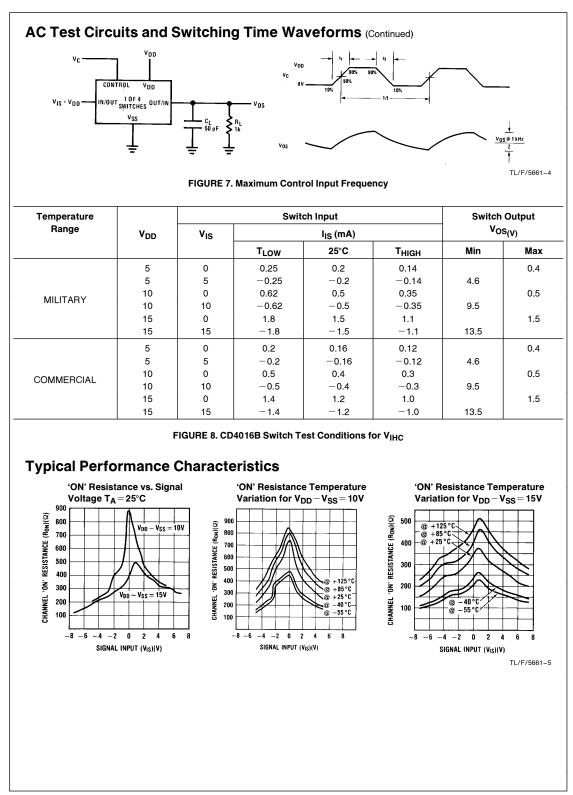
Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Frequency Response — Switch "ON" (Frequency at -3 dB)	$V_{C} = V_{DD} = 5V, V_{SS} = -5V,$ $R_{L} = 1 k\Omega, V_{IS} = 5 V_{P,P},$ $20 Log_{10} V_{OS} / V_{OS} (1 \text{ kHz}) - dB,$ (<i>Figure 4</i>)		40		MHz
	Feedthrough — Switch "OFF" (Frequency at -50 dB)	$V_{DD} = 5V, V_C = V_{SS} = -5V,$ $R_L = 1 k\Omega, V_{IS} = 5 V_{P-P},$ $20 Log_{10} (V_{OS}/V_{IS}) = -50 dB,$ (<i>Figure 4</i>)		1.25		MHz
	Crosstalk Between Any Two Switches (Frequency at -50 dB)			0.9		MHz
	Crosstalk; Control Input to Signal Output Maximum Control Input	$V_{DD} = 10V$, $R_L = 10 k\Omega$ $R_{IN} = 1 k\Omega$, $V_{CC} = 10V$ Square Wave, $C_L = 50 \text{ pF}$ (<i>Figure 6</i>) $R_L = 1 k\Omega$, $C_L = 50 \text{ pF}$, (<i>Figure 7</i>)		150		mV _{P-P}
		$V_{OS(f)} = \frac{1}{2} V_{OS}(1 \text{ kHz})$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		6.5 8.0 9.0		MHz MHz MHz
CIS	Signal Input Capacitance			4		pF
C _{OS}	Signal Output Capacitance	V _{DD} =10V		4		pF
C _{IOS}	Feedthrough Capacitance	V _C =0V		0.2		pF
C _{IN}	Control Input Capacitance			5	7.5	pF

*AC Paramters are guaranteed by DC correlated testing.

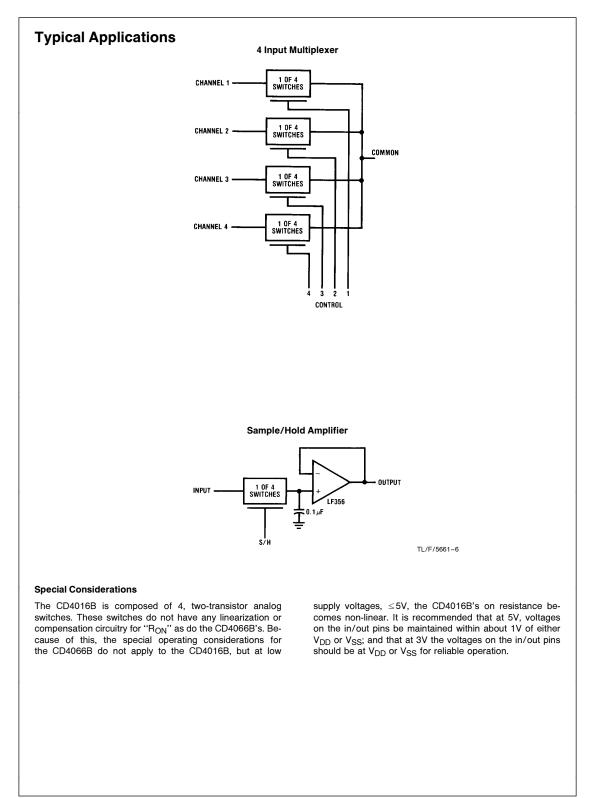
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

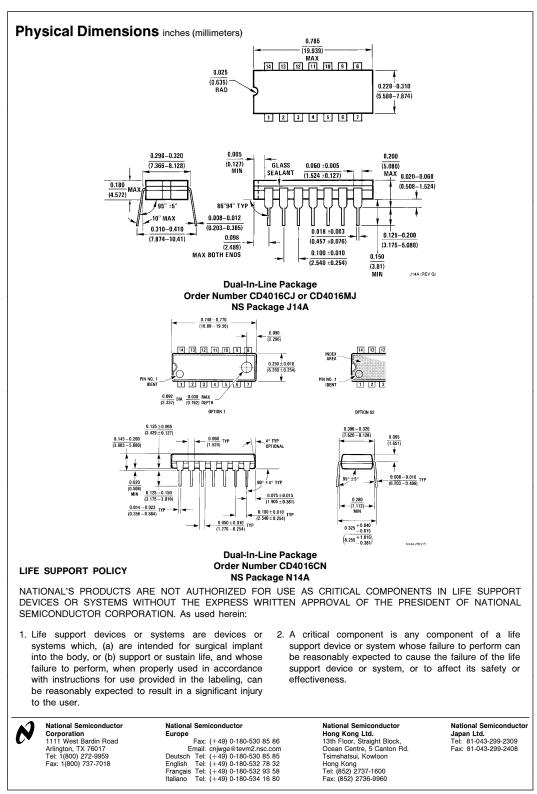

Note 2: V_{SS}=0V unless otherwise specified.


Note 3: These devices should not be connected to circuits with the power "ON".


Note 4: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in C1 wherever it is specified. Note 5: V_{IS} is the voltage at the in/out pin and V_{OS} is the voltage at the out/in pin. V_C is the voltage at the control input.

Note 6: If the switch input is held at V_{DD}, V_{IHC} is the control input level that will cause the switch output to meet the standard "B" series V_{OH} and I_{OH} output levels. If the analog switch input is connected to V_{SS}, V_{IHC} is the control input level — which allows the switch to *sink* standard "B" series |I_{OH}|, high level current, and still maintain a V_{OL} \leq "B" series. These currents are shown in Figure 8.


AC Test Circuits and Switching Time Waveforms



6

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.