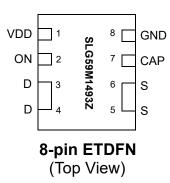


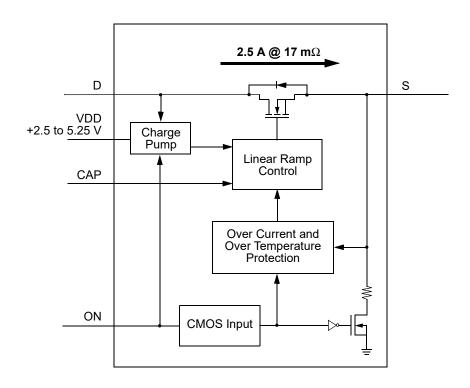
Ultra-small 17 m Ω 2.5 A Load Switch with Discharge in Lo-ZTM Ultra-thin Package


General Description

The SLG59M1493Z is a 17 m Ω 2.5 A single-channel load switch that is able to switch 1 V to 5 V power rails. The product is packaged in an ultra-small 1.0 x 1.6 mm ETDFN package.

Features

- 1.0 x 1.6 x 0.3 mm ETDFN 8L package (2 fused pins for drain and 2 fused pins for source)
- Logic level ON pin capable of supporting 0.85 V CMOS Logic
- · User selectable ramp rate with external capacitor
- 17 m Ω RDS_{ON}while supporting 2.5 A
- · Discharges load when off
- · Two Over Current Protection Modes
 - · Short Circuit Current Limit
 - · Active Current Limit
- · Over Temperature Protection
- Pb-Free / Halogen-Free / RoHS compliant
- Operating Temperature: -20 °C to 70°C
- · Operating Voltage: 2.5 V to 5.25 V


Pin Configuration

Applications

- · Notebook Power Rail Switching
- · Tablet Power Rail Switching
- · Smartphone Power Rail Switching

Block Diagram

SLG59M1493Z

Pin Description

Pin#	Pin Name	Туре	Pin Description			
1	VDD	PWR	V _{DD} power for load switch control (2.5 V to 5.25 V)			
2	ON	Input	Turns MOSFET ON (4 M Ω pull down resistor) CMOS input with V _{IL} < 0.3 V, V _{IH} > 0.85 V			
3	D	MOSFET Drain of Power MOSFET (fused with pin 4)				
4	D	MOSFET Drain of Power MOSFET (fused with pin 3)				
5	S	MOSFET	Source of Power MOSFET (fused with pin 6)			
6	S	MOSFET	Source of Power MOSFET (fused with pin 5)			
7	CAP	Input	Capacitor for controlling power rail ramp rate			
8	GND	GND	Ground			

Ordering Information

Part Number	Туре	Production Flow
SLG59M1493Z	ETDFN 8L	Commercial, -20 °C to 70 °C
SLG59M1493ZTR	ETDFN 8L (Tape and Reel)	Commercial, -20 °C to 70 °C

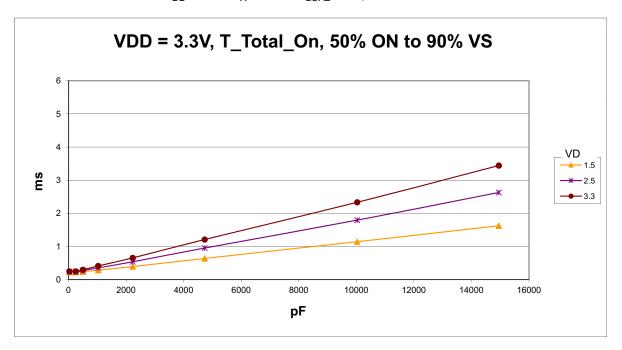
Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Power Supply				6	V
T _S	Storage Temperature		-65		150	°C
ESD _{HBM}	ESD Protection	Human Body Model	2000			V
W _{DIS}	Package Power Dissipation				0.2	W
MOSFET IDS _{PK}	Peak Current from Drain to Source	For no more than 1 ms with 1% duty cycle			3.5	Α

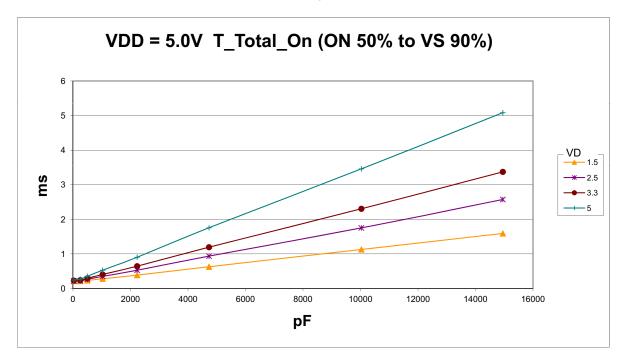
Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

 T_A = -20 to 70 °C (unless otherwise stated)


Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Power Supply Voltage	-20 to 70°C	2.5		5.25	V
I _{DD}	Device Overale Overset (DIN 4)	when OFF			1	μΑ
	Power Supply Current (PIN 1)	when ON, No load		75	100	μΑ
DDC	Static Drain to Source	T _A 25°C @ 100 mA		17	19	mΩ
RDS _{ON}	ON Resistance	T _A 70°C @ 100 mA		18.5	20	mΩ
IDS	Operating Current	V _D = 1.0 V to 5.5 V			2.5	Α
V_D	Drain Voltage		1.0		V_{DD}	V
T _{ON_Delay}	ON pin Delay Time	50% ON to Ramp Begin	0	300	500	μs
		50% ON to 90% V _S	Co	onfigurable	e ¹	ms
T _{Total_ON}	Total Turn On Time	Example: CAP (PIN 7) = 4 nF, $V_{DD} = V_{D} = 5 \text{ V, } C_{LOAD} = 10 \mu\text{F,}$ IDS = 100 mA		1.50		ms
		10% V _S to 90% V _S	Configurable ¹			V/ms
T _{SLEWRATE} Slew Rate		Example: CAP (PIN 7) = 4 nF, $V_{DD} = V_{D} = 5 \text{ V, } C_{LOAD} = 10 \mu\text{F,} IDS = 100 \text{ mA}$		3.4		V/ms
C _{LOAD}	Output Load Capacitance	C _{LOAD} connected from V _S to GND			500	μF
R _{DIS}	Discharge Resistance		100	200	300	Ω
ON_V _{IH}	High Input Voltage on ON pin		0.85		V_{DD}	V
ON_V _{IL}	Low Input Voltage on ON pin		-0.3	0	0.3	V
	Active Current Limit	MOSFET will automatically limit current when $V_S > 250 \text{ mV}$		3.7		Α
I _{LIMIT}	Short Circuit Current Limit	MOSFET will automatically limit current when $V_{\rm S}$ < 250 mV		0.9		Α
THERMON	Thermal shutoff turn-on temperature			125		°C
THERM _{OFF}	Thermal shutoff turn-off temperature			100		°C
THERM _{TIME}	Thermal shutoff time				1	ms
T _{OFF_Delay}	OFF Delay Time	50% ON to V_S Fall, $V_{DD} = V_D = 5 V$		8		μs
T _{FALL}	V _S Fall Time	90% V _S to 10% V _S , V _{DD} = V _D = 5 V		33		μs

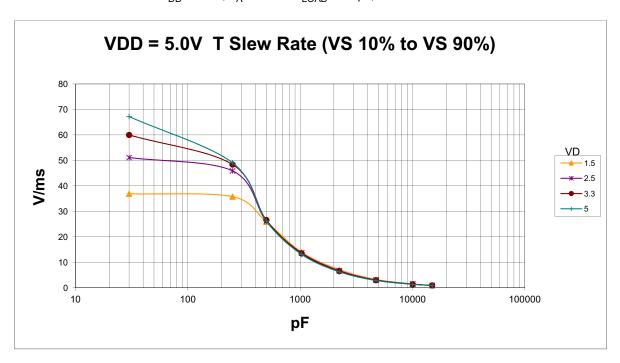
1. Refer to table for configuration details.


 $T_{Total ON}$ vs. CAP @ V_{DD} = 3.3 V

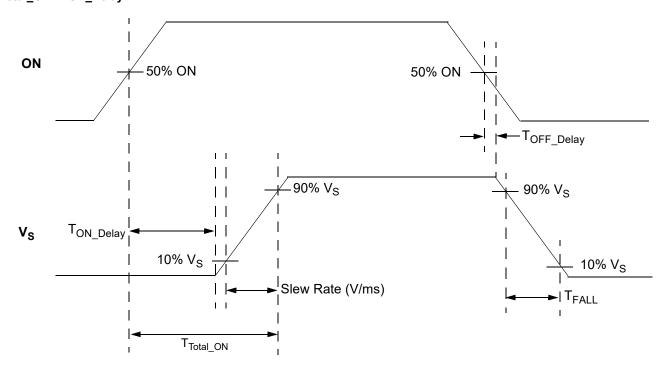
SLG59M1493Z T_{Total_ON}: ON (50%) - V_S (90%) V_{DD} = 3.3 V, T_A = 25 °C. $^{\circ}$ C_{LOAD} = 10 $^{\circ}$ F, IDS = 100 mA

 T_{Total_ON} vs. CAP @ V_{DD} = 5.0 V

SLG59M1493Z T_{Total_ON}: ON (50%) - V_S (90%) V_{DD} = 5.0 V, T_A = 25 °C. $^{\circ}$ C_{LOAD} = 10 $^{\circ}$ F, IDS = 100 mA


 $T_{SLEWRATE}$ vs. CAP @ V_{DD} = 3.3 V

SLG59M1493Z T_{SLEWRATE}: V_S (10%) - V_S (90%) V_{DD} = 3.3 V, T_A = 25 °C. C_{LOAD} = 10 μ F, IDS = 100 mA


T_{SLEWRATE} vs. CAP @ V_{DD} = 5.0 V

SLG59M1493Z T_{SLEWRATE}: V_S (10%) - V_S (90%) V_{DD} = 5.0 V, T_A = 25 °C. C_{LOAD} = 10 μ F, IDS = 100 mA

$\rm T_{Total_ON}, \rm T_{ON_Delay}$ and Slew Rate Measurement

SLG59M1493Z Power-Up/Power-Down Sequence Considerations

To ensure glitch-free power-up under all conditions, apply V_{DD} first, followed by V_{D} after V_{DD} exceeds 1 V. Then allow V_{D} to reach 90% of its max value before toggling the ON pin from Low-to-High. Likewise, power-down in reverse order.

If V_{DD} and V_{D} need to be powered up simultaneously, glitching can be minimized by having a suitable load capacitor. A 10 μ F C_{LOAD} will prevent glitches for rise times of V_{DD} and V_{D} higher than 2 ms.

If the ON pin is toggled HIGH before V_{DD} and V_{D} have reached their steady-state values, the load switch timing parameters may differ from datasheet specifications.

The slew rate of output V_S follows a linear ramp set by a capacitor connected to the CAP pin. A larger capacitor value at the CAP pin produces a slower ramp, reducing inrush current from capacitive loads.

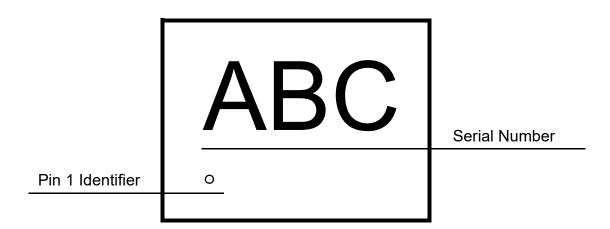
SLG59M1493Z Current Limiting

The SLG59M1493Z has two modes of current limiting, differentiated by the output (Source pin) voltage.

1. Standard Current Limiting Mode (with Thermal Protection)

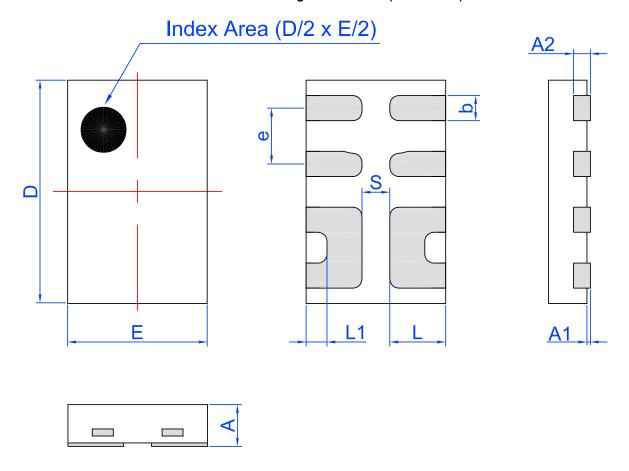
When V(S) > 250 mV, the output current is initially limited to the Active Current Limit specification given in the Electrical Characteristics table. The current limiting circuit is very fast and responds within a few micro-seconds to sudden loads. When overload is sensed, the current limiting circuit increases the FET resistance to keep the current from exceeding the Active Current Limit.

However, if an overload condition persists, the die temperature rise due to the increased FET resistance while at maximum current can activate Thermal Protection. If the die temperature exceeds the THERM_{ON} specification, the FET is shut completely OFF, allowing the die to cool. When the die cools to the THERM_{OFF} temperature, the FET is allowed to turn back on. This process may repeat as long as the overload condition is present.


2. Short Circuit Current Limiting Mode (with Thermal Protection)

When V(S) < 250 mV (which is the case with a hard short, such as a solder bridge on the power rail), the current is limited to approximately 500 mA. Thermal Protection is also present, but since the Short Circuit Current Limit is much lower than Standard Current Limit, activation may only occur at higher ambient temperatures.

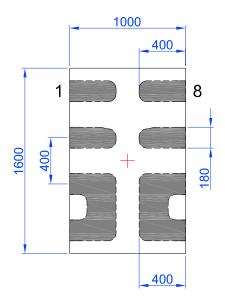
For more information on GreenFET load switch features, please visit our website and see App Note "AN-1068 GreenFET and High Voltage GreenFET Load Switch Basics.

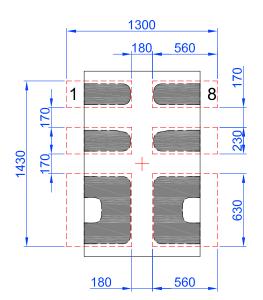

Package Top Marking System Definition

Package Drawing and Dimensions

8 Lead ETDFN Package 1.0 x 1.6 mm (Fused Lead)

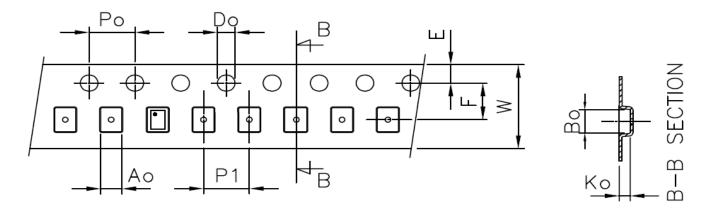
Unit: mm


Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.25	0.275	0.30	D	1.55	1.60	1.65
A1	0.005	_	0.050	Е	0.95	1.00	1.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.13	0.18	0.23	L1	0.10	0.15	0.20
е	0.40 BSC			S	().2 REF	



SLG59M1493Z 8-pin ETDFN PCB Landing Pattern

Unit: um



Tape and Reel Specifications

Bookaga	# of	Nominal Max Units		Reel &	Leader (min)		Trailer (min)		Tape	Part	
Package Type	# OI Pins	Package Size [mm]	per Reel	per Box	Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
ETDFN 8L 1 x1.6 mm 0.4P FC Green	8	1.0 x 1.6 x 0.275	5,000	5,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	PocketBTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge		Tape Width
	A0	В0	K0	P0	P1	D0	E	F	W
ETDFN 8L 1 x1.6 mm 0.4P FC Green	1.15	1.78	0.42	4	4	1.55	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 0.48 mm³ (nominal). More information can be found at www.jedec.org.

Revision History

Date	Version	Change
2/14/2022	0.16	Renesas rebranding Fixed typos
9/1/2016	0.15	Updated Power Up/Down Sequencing Considerations Updated Current Limiting Description Updated text and parameter names for clarity
6/16/2016	0.14	Updated POD dimensions Added Landing Pattern

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/